Defining synthetic surfaces for human pluripotent stem cell culture
Tóm tắt
Human pluripotent stem cells (hPSCs) are able to self-renew indefinitely and to differentiate into all adult cell types. hPSCs therefore show potential for application to drug screening, disease modelling and cellular therapies. In order to meet this potential, culture conditions must be developed that are consistent, defined, scalable, free of animal products and that facilitate stable self-renewal of hPSCs. Several culture surfaces have recently been reported to meet many of these criteria although none of them have been widely implemented by the stem cell community due to issues with validation, reliability and expense. Most hPSC culture surfaces have been derived from extracellular matrix proteins (ECMPs) and their cell adhesion molecule (CAM) binding motifs. Elucidating the CAM-mediated cell-surface interactions that are essential for the in vitro maintenance of pluripotency will facilitate the optimisation of hPSC culture surfaces. Reports indicate that hPSC cultures can be supported by cell-surface interactions through certain CAM subtypes but not by others. This review summarises the recent reports of defined surfaces for hPSC culture and focuses on the CAMs and ECMPs involved.
Tài liệu tham khảo
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282: 1145–1147.
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131: 861–872. 10.1016/j.cell.2007.11.019
Kim SH, Turnbull J, Guimond S: Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 2011, 209: 139–151. 10.1530/JOE-10-0377
Li L, Bennett SAL, Wang L: Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 2012, 6: 59–70. 10.4161/cam.19583
Shen B, Delaney MK, Du X: Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 2012, 24: 600–606. 10.1016/j.ceb.2012.08.011
Lu J, Hou R, Booth CJ, Yang SH, Snyder M: Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci USA 2006, 103: 5688–5693. 10.1073/pnas.0601383103
Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, et al.: Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 2008, 26: 2257–2265. 10.1634/stemcells.2008-0291
Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL: A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 2010, 7: 989–994. 10.1038/nmeth.1532
Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, et al.: Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 2010, 28: 606–610. 10.1038/nbt.1629
Nagaoka M, Si Tayeb K, Akaike T, Duncan SA: Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol 2010, 10: 60. 10.1186/1471-213X-10-60
Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K: Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 2010, 28: 611–615. 10.1038/nbt.1620
Saha K, Mei Y, Reisterer CM, Pyzocha NK, Yang J, Muffat J, Davies MC, Alexander MR, Langer R, Anderson DG, Jaenisch R: Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc Natl Acad Sci 2011, 108: 18714–18719. 10.1073/pnas.1114854108
Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E: Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 2012, 3: 1236.
Irwin EF, Gupta R, Dashti DC, Healy KE: Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 2011, 32: 6912–6919. 10.1016/j.biomaterials.2011.05.058
Brafman D, Shah K, Fellner T, Chien S, Willert K: Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem cells dev 2009, 18: 1141–1154. 10.1089/scd.2008.0410
Hakala H, Rajala K, Ojala M, Panula S, Areva S, Kellomaki M, Suuronen R, Skottman H: Comparison of Biomaterials and Extracellular Matrices as a Culture Platform for Multiple, Independently Derived Human Embryonic Stem Cell Lines. Tissue Eng Part A 2009, 15: 1775–1785. 10.1089/ten.tea.2008.0316
Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J, Christie M, Ford A, Fox V, Gokhale PJ, Healy L, et al.: Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. Vitro Cell Dev Biol Animal 2010, 46: 247–258. 10.1007/s11626-010-9297-z
Kleinsmith LJ, Pierce GB Jr: Multipotentiality of Single Embryonal Carcinoma Cells. Cancer research 1964, 24: 1544–1551.
Greenow K, Clarke AR: Controlling the stem cell compartment and regeneration in vivo: The role of pluripotency pathways. Physiol Rev 2012, 92: 75–99. 10.1152/physrev.00040.2010
Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, et al.: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007, 25: 803–816. 10.1038/nbt1318
Hough SR, Laslett AL, Grimmond SB, Kolle G, Pera MF: A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS ONE 2009, 4: e7708. 10.1371/journal.pone.0007708
Nichols J, Smith A: Naive and Primed Pluripotent States. Cell Stem Cell 2009, 4: 487–492. 10.1016/j.stem.2009.05.015
Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, Ding S: Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA 2010, 107: 8129–8134. 10.1073/pnas.1002024107
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998, 95: 379–391. 10.1016/S0092-8674(00)81769-9
Martin GR, Evans MJ: Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci USA 1975, 72: 1441–1445. 10.1073/pnas.72.4.1441
Solter D, Knowles BB: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978, 75: 5565–5569. 10.1073/pnas.75.11.5565
Clark AT, Rodriguez RT, Bodnar MS, Abeyta MJ, Cedars MI, Turek PJ, Firpo MT, Pera RAR: Human STELLAR, NANOG, and GDF3 Genes Are Expressed in Pluripotent Cells and Map to Chromosome 12p13, a Hotspot for Teratocarcinoma. Stem Cells 2004, 22: 169–179. 10.1634/stemcells.22-2-169
Spencer H, Keramari M, Ward CM: Using cadherin to assess spontaneous differentiation of embryonic stem cells. Methods Mol Biol 2011, 690: 81–94.
Boyes J, Bird A: Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein. EMBO Journal 1992, 11: 327–333.
Baker-Andresen D, Ratnu VS, Bredy TW: Dynamic DNA methylation: A prime candidate for genomic metaplasticity and behavioral adaptation. Trends Neurosci 2013, 36: 3–13. 10.1016/j.tins.2012.09.003
Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, et al.: Reference maps of human es and ips cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011, 144: 439–452. 10.1016/j.cell.2010.12.032
Doetschman TC, Eistetter H, Katz M: The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985, 87: 27–45.
Keller GM: In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 1995, 7: 862–869. 10.1016/0955-0674(95)80071-9
Jones-Villeneuve EMV, McBurney MW, Rogers KA, Kalnins VI: Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 1982, 94: 253–262. 10.1083/jcb.94.2.253
Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, et al.: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011, 8: 106–118. 10.1016/j.stem.2010.12.003
Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK: Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001, 19: 971–974. 10.1038/nbt1001-971
Fu X, Toh WS, Liu H, Lu K, Li M, Cao T: Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Meth 2011, 17: 927–937. 10.1089/ten.tec.2010.0735
Prathalingam N, Ferguson L, Young L, Lietz G, Oldershaw R, Healy L, Craig A, Lister H, Binaykia R, Sheth R, et al.: Production and validation of a good manufacturing practice grade human fibroblast line for supporting human embryonic stem cell derivation and culture. Stem Cell Res Ther 2012, 3: 12. 10.1186/scrt103
Wang Q, Mou X, Cao H, Meng Q, Ma Y, Han P, Jiang J, Zhang H: A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture. Protein and Cell 2012, 3: 51–59. 10.1007/s13238-012-2002-0
Jones MB, Chu CH, Pendleton JC, Betenbaugh MJ, Shiloach J, Baljinnyam B, Rubin JS, Shamblott MJ: Proliferation and pluripotency of human embryonic stem cells maintained on type i collagen. Stem cells dev 2010, 19: 1923–1935. 10.1089/scd.2009.0326
Yue XS, Fujishiro M, Nishioka C, Arai T, Takahashi E, Gong JS, Akaike T, Ito Y: Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation. PLoS ONE 2012, 7: e32707. 10.1371/journal.pone.0032707
Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, et al.: Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010, 9: 768–778. 10.1038/nmat2812
Stephenson E, Jacquet L, Miere C, Wood V, Kadeva N, Cornwell G, Codognotto S, Dajani Y, Braude P, Ilic D: Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 2012, 7: 1366–1381. 10.1038/nprot.2012.080
Villa-Diaz LG, Brown SE, Liu Y, Ross AM, Lahann J, Parent JM, Krebsbach PH: Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells 2012, 30: 1174–1181. 10.1002/stem.1084
Hu P, Luo BH: Integrin bi-directional signaling across the plasma membrane. J Cell Physiol 2013, 228: 306–312. 10.1002/jcp.24154
Kolle G, Ho M, Zhou Q, Chy HS, Krishnan K, Cloonan N, Bertoncello I, Laslett AL, Grimmond SM: Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. Stem Cells 2009, 27: 2446–2456. 10.1002/stem.182
Adjaye J, Huntriss J, Herwig R, Benkahla A, Brink TC, Wierling C, Hultschig C, Groth D, Yaspo ML, Picton HM, et al.: Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells 2005, 23: 1514–1525. 10.1634/stemcells.2005-0113
Baxter MA, Camarasa MV, Bates N, Small F, Murray P, Edgar D, Kimber SJ: Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res 2009, 3: 28–38. 10.1016/j.scr.2009.03.002
Eastham AM, Spencer H, Soncin F, Ritson S, Merry CLR, Stern PL, Ward CM: Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 2007, 67: 11254–11262. 10.1158/0008-5472.CAN-07-2253
Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RHW, Han L, Fan R, Krebsbach PH, Fu J: Nanotopography influences adhesion, spreading, and self-renewal of Human embryonic stem cells. ACS Nano 2012, 6: 4094–4103. 10.1021/nn3004923
Horák V, Fléchon JE: Immunocytochemical characterisation of rabbit and mouse embryonic fibroblasts. Reprod Nutr Dev 1998, 38: 683–695. 10.1051/rnd:19980610
Hughes CS, Postovit LM, Lajoie GA: Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10: 1886–1890. 10.1002/pmic.200900758
Kadler KE, Hill A, Canty-Laird EG: Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 2008, 20: 495–501. 10.1016/j.ceb.2008.06.008
Heino J: The collagen family members as cell adhesion proteins. Bioessays 2007, 29: 1001–1010. 10.1002/bies.20636
Graf J, Iwamoto Y, Sasaki M, Martin GR, Kleinman HK, Robey FA, Yamada Y: Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 1987, 48: 989–996. 10.1016/0092-8674(87)90707-0
Nomizu M, Kuratomi Y, Song SY, Ponce ML, Hoffman MP, Powell SK, Miyoshi K, Otaka A, Kleinman HK, Yamada Y: Identification of cell binding sequences in mouse laminin chain by systematic peptide screening. J Biol Chem 1997, 272: 32198–32205. 10.1074/jbc.272.51.32198
Meng Y, Eshghi S, Li YJ, Schmidt R, Schaffer DV, Healy KE: Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J 2010, 24: 1056–1065. 10.1096/fj.08-126821
Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R: Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 2005, 91: 688–698. 10.1002/bit.20536
Fletcher JM, Ferrier PM, Gardner JO, Harkness L, Dhanjal S, Serhal P, Harper J, Delhanty J, Brownstein DG, Prasad YR, et al.: Variations in humanized and defined culture conditions supporting derivation of new human embryonic stem cell lines. Cloning Stem Cells 2006, 8: 319–334. 10.1089/clo.2006.8.319
Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H: Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008, 375: 27–32. 10.1016/j.bbrc.2008.07.111
Manton KJ, Richards S, Van Lonkhuyzen D, Cormack L, Leavesley D, Upton Z: A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells. Stem Cells Dev 2010, 19: 1297–1305. 10.1089/scd.2009.0504
Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling L: Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2007, 2: 347–355. 10.1021/cb700032u
Deutzmann R, Aumailley M, Wiedemann H, Pysny W, Timpl R, Edgar D: Cell adhesion, spreading and neurite stimulation by laminin fragment E8 depends on maintenance of secondary and tertiary structure in its rod and globular domain. Eur J Biochem 1990, 191: 513–522. 10.1111/j.1432-1033.1990.tb19151.x
Keski Oja J: Polymerization of a major surface associated glycoprotein, fibronectin, in cultured fibroblasts. FEBS Lett 1976, 71: 325–329. 10.1016/0014-5793(76)80962-3
Singh P, Carraher C, Schwarzbauer JE: Assembly of fibronectin extracellular marix. Annu Rev Cell Dev Biol 2010, 26: 397–419. 10.1146/annurev-cellbio-100109-104020
Tsutsui H, Valamehr B, Hindoyan A, Qiao R, Ding X, Guo S, Witte ON, Liu X, Ho C-M, Wu H: An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun 2011, 2: 167.
Liu Y, Charles LF, Zarembinski TI, Johnson KI, Atzet SK, Wesselschmidt RL, Wight ME, Kuhn LT: Modified Hyaluronan Hydrogels Support the Maintenance of Mouse Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Macromol Biosci 2012, 12: 1034–1042. 10.1002/mabi.201200043
Hughes CS, Radan L, Betts D, Postovit LM, Lajoie GA: Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics 2011, 11: 3983–3991. 10.1002/pmic.201100030
Hautanen A, Gailit J, Mann DM, Ruoslahti E: Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem 1989, 264: 1437–1442.
Mardilovich A, Craig JA, McCammon MQ, Garg A, Kokkoli E: Design of a novel fibronectin-mimetic peptide-amphiphile for functionalized biomaterials. Langmuir 2006, 22: 3259–3264. 10.1021/la052756n
Schvartz I, Seger D, Shaltiel S: Vitronectin. Int J Biochem Cell Biol 1999, 31: 539–544. 10.1016/S1357-2725(99)00005-9
Suzuki S, Oldberg A, Hayman EG, Pierschbacher MD, Ruoslahti E: Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO Journal 1985, 4: 2519–2524.
Yap LYW, Li J, Phang IY, Ong LT, Ow JZE, Goh JCH, Nurcombe V, Hobley J, Choo ABH, Oh SKW, et al.: Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells. Tissue Eng Part C Meth 2011, 17: 193–207. 10.1089/ten.tec.2010.0328
Meng G, Liu S, Rancourt DE: Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem cells dev 2012, 21: 2036–2048. 10.1089/scd.2011.0489
Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, et al.: Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011, 8: 424–429. 10.1038/nmeth.1593
Kim HT, Lee KI, Kim DW, Hwang DY: An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials 2013, 34: 1041–1050. 10.1016/j.biomaterials.2012.10.064
Abraham S, Riggs MJ, Nelson K, Lee V, Rao RR: Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. Acta Biomater 2010, 6: 4622–4633. 10.1016/j.actbio.2010.07.029
Prowse ABJ, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, Chung TL, Haylock DN, Gray PP, Wolvetang EJ: Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 2010, 31: 8281–8288. 10.1016/j.biomaterials.2010.07.037
Klim JR, Fowler AJ, Courtney AH, Wrighton PJ, Sheridan RTC, Wong ML, Kiessling LL: Small-molecule-modified surfaces engage cells through the α vβ 3 integrin. ACS Chem Biol 2012, 7: 518–525. 10.1021/cb2004725
Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA: Feeder-independent culture of human embryonic stem cells. Nat meth 2006, 3: 637–646. 10.1038/nmeth902
Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan ACA: A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 2012, 33: 2419–2430. 10.1016/j.biomaterials.2011.11.077
Mahlstedt MM, Anderson D, Sharp JS, McGilvray R: Barbadillo Muñoz MD, Buttery LD, Alexander MR, Rose FRAJ, Denning C: Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnol Bioeng 2010, 105: 130–140. 10.1002/bit.22520
Bigdeli N, Andersson M, Strehl R, Emanuelsson K, Kilmare E, Hyllner J, Lindahl A: Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol 2008, 133: 146–153. 10.1016/j.jbiotec.2007.08.045
Nandivada H, Villa-Diaz LG, O'Shea KS, Smith GD, Krebsbach PH, Lahann J: Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat Protoc 2011, 6: 1037–1043. 10.1038/nprot.2011.342
Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS: Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 2010, 5: e15655. 10.1371/journal.pone.0015655
Kolhar P, Kotamraju VR, Hikita ST, Clegg DO, Ruoslahti E: Synthetic surfaces for human embryonic stem cell culture. J Biotechnol 2010, 146: 143–146. 10.1016/j.jbiotec.2010.01.016
Tamada Y, Ikada Y: Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces. J Colloid Interface Sci 1993, 155: 334–339. 10.1006/jcis.1993.1044
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005, 105: 1103–1169. 10.1021/cr0300789
Jonas SJ, Alva JA, Richardson W, Sherman SP, Galic Z, Pyle AD, Dunn B: A spatially and chemically defined platform for the uniform growth of human pluripotent stem cells. Mater Sci Eng C 2013, 33: 234–241. 10.1016/j.msec.2012.08.035
Flynn NT, Tran TNT, Cima MJ, Langer R: Long-term stability of self-assembled monolayers in biological media. Langmuir 2003, 19: 10909–10915. 10.1021/la035331e
Gasimli L, Linhardt RJ, Dordick JS: Proteoglycans in stem cells. Biotechnol Appl Biochem 2012, 59: 65–76. 10.1002/bab.1002
Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL: Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 2012, 6: 10168–10177. 10.1021/nn3039148
Ballut L, Sapay N, Chautard É, Imberty A, Ricard-Blum S: Mapping of heparin/heparan sulfate binding sites on αvβ3 integrin by molecular docking. J Mol Recognit 2013, 26: 76–85. 10.1002/jmr.2250
Ford-Perriss M, Guimond SE, Greferath U, Kita M, Grobe K, Habuchi H, Kimata K, Esko JD, Murphy M, Turnbull JE: Variant heparan sulfates synthesized in developing mouse brain differentially regulate FGF signaling. Glycobiology 2002, 12: 721–727. 10.1093/glycob/cwf072
Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA: Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 2006, 24: 568–574. 10.1634/stemcells.2005-0247
Kraushaar DC, Yamaguchi Y, Wang L: Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 2010, 285: 5907–5916. 10.1074/jbc.M109.066837
Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA: Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2005, 2: 185–190. 10.1038/nmeth744
Villa-Diaz LG, Nandivada H, Ding J, Nogueira-De-Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD: Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 2010, 28: 581–583. 10.1038/nbt.1631
Ross AM, Nandivada H, Ryan AL, Lahann J: Synthetic substrates for long-term stem cell culture. Polymer (United Kingdom) 2012, 53: 2533–2539.
Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S: Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 2010, 31: 9135–9144. 10.1016/j.biomaterials.2010.08.007
Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, Ratner BD, Jiang S: Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 2013,31(6):553–556. 10.1038/nbt.2580
Chang CW, Hwang Y, Brafman D, Hagan T, Phung C, Varghese S: Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials 2013, 34: 912–921. 10.1016/j.biomaterials.2012.10.020
Gao SY, Lees JG, Wong JCY, Croll TI, George P, Cooper-White JJ, Tuch BE: Modeling the adhesion of human embryonic stem cells to poly(lactic-co- glycolic acid) surfaces in a 3D environment. J Biomed Materials Res Part A 2010, 92: 683–692.
Lib J, Bardy J, Yap LYW, Chen A, Nurcombe V, Cool SM, Oh SKW, Birch WR: Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases 2010, 5: 132–142.
Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA: Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 2009, 109: 5437–5527. 10.1021/cr900045a
Coad BR, Lu Y, Glattauer V, Meagher L: Substrate-independent method for growing and modulating the density of polymer brushes from surfaces by atrp. ACS Appl Materials Interfaces 2012, 4: 2811–2823. 10.1021/am300463q
Ameringer T, Fransen P, Bean P, Johnson G, Pereira S, Evans RA, Thissen H, Meagher L: Polymer coatings that display specific biological signals while preventing nonspecific interactions. J Biomed Mater Res A 2012, 100 A: 370–379.
Jing D, Parikh A, Canty JM Jr, Tzanakakis ES: Stem cells for heart cell therapies. Tissue Eng Part B Rev 2008, 14: 393–406. 10.1089/ten.teb.2008.0262
Want AJ, Nienow AW, Hewitt CJ, Coopman K: Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: Beyond the T flask. Regen Med 2012, 7: 71–84.
Bardy J, Chen AK, Lim YM, Wu S, Wei S, Weiping H, Chan K, Reuveny S, Oh SKW: Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng Part C Methods 2013, 19: 166–180. 10.1089/ten.tec.2012.0146
Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H: Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Meth 2012, 18: 831–851. 10.1089/ten.tec.2012.0161
Domogatskaya A, Rodin S, Boutaud A, Tryggvason K: Laminin-511 but Not-332,-111, or-411 Enables Mouse Embryonic Stem Cell Self-Renewal In Vitro. Stem Cells 2008, 26: 2800–2809. 10.1634/stemcells.2007-0389
Kalaskar DM, Downes JE, Murray P, Edgar DH, Williams RL: Characterization of the interface between adsorbed fibronectin and human embryonic stem cells. J R Soc Interface 2013, 10: 20130139. 10.1098/rsif.2013.0139
Collins MN, Birkinshaw C: Hyaluronic acid based scaffolds for tissue engineering-A review. Carbohydr Polym 2012, 92: 1262–1279.
Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G: Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 2007, 104: 11298–11303. 10.1073/pnas.0703723104
Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE: Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 2006, 79: 1–5.
Chen AKL, Chen X, Choo ABH, Reuveny S, Oh SKW: Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 2011, 7: 97–111. 10.1016/j.scr.2011.04.007
Serra M, Brito C, Correia C, Alves PM: Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 2012, 30: 350–359. 10.1016/j.tibtech.2012.03.003
O'Brien C, Laslett AL: Suspended in culture - Human pluripotent cells for scalable technologies. Stem Cell Res 2012, 9: 167–170. 10.1016/j.scr.2012.06.001
Heng BC, Li J, Chen AKL, Reuveny S, Cool SM, Birch WR, Oh SKW: Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem cells dev 2012, 21: 1701–1715. 10.1089/scd.2011.0509
Ramos-Mejia V, Bueno C, Roldan M, Sanchez L, Ligero G, Menendez P, Martin M: The adaptation of human embryonic stem cells to different feeder-free culture conditions is accompanied by a mitochondrial response. Stem Cells Dev 2012, 21: 1145–1155. 10.1089/scd.2011.0248
Tompkins JD, Hall C, Chen VCY, Li AX, Wu X, Hsu D, Couture LA, Riggs AD: Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci USA 2012, 109: 12544–12549. 10.1073/pnas.1209620109
Chen T, Yuan D, Wei B, Jiang J, Kang J, Ling K, Gu Y, Li J, Xiao L, Pei G: E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 2010, 28: 1315–1325. 10.1002/stem.456
Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A: Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev 2013, 113: 3297–3328. 10.1021/cr300426x
Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, et al.: Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006, 24: 185–187. 10.1038/nbt1177
Harb N, Archer TK, Sato N: The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS ONE 2008, 3: e3001. 10.1371/journal.pone.0003001
Derda R, Musah S, Orner BP, Klim JR, Li N, Kiessling LL: High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc 2010, 132: 1289–1295. 10.1021/ja906089g