Efficient, Complete Deletion of Synaptic Proteins using CRISPR

Neuron - Tập 83 - Trang 1051-1057 - 2014
Salvatore Incontro1, Cedric S. Asensio2,3, Robert H. Edwards2,3, Roger A. Nicoll1,2
1Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
2Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
3Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA

Tài liệu tham khảo

Adesnik, 2008, NMDA receptors inhibit synapse unsilencing during brain development, Proc. Natl. Acad. Sci. USA, 105, 5597, 10.1073/pnas.0800946105 Alvarez, 2006, Retraction of synapses and dendritic spines induced by off-target effects of RNA interference, J. Neurosci., 26, 7820, 10.1523/JNEUROSCI.1957-06.2006 Canver, 2014, Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells, J. Biol. Chem., 289, 21312, 10.1074/jbc.M114.564625 Capecchi, 1989, Altering the genome by homologous recombination, Science, 244, 1288, 10.1126/science.2660260 Collingridge, 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol., 334, 33, 10.1113/jphysiol.1983.sp014478 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Ehrlich, 2004, Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity, J. Neurosci., 24, 916, 10.1523/JNEUROSCI.4733-03.2004 Elias, 2006, Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins, Neuron, 52, 307, 10.1016/j.neuron.2006.09.012 Fire, 1998, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806, 10.1038/35888 Fu, 2013, High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol., 31, 822, 10.1038/nbt.2623 Futai, 2007, Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin, Nat. Neurosci., 10, 186, 10.1038/nn1837 Gray, 2011, Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo, Neuron, 71, 1085, 10.1016/j.neuron.2011.08.007 Hannon, 2002, RNA interference, Nature, 418, 244, 10.1038/418244a Hayashi, 2000, Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction, Science, 287, 2262, 10.1126/science.287.5461.2262 Hestrin, 1990, Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices, J. Physiol., 422, 203, 10.1113/jphysiol.1990.sp017980 Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010 Jonas, 1995, Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels, Neuron, 15, 987, 10.1016/0896-6273(95)90087-X Lu, 2009, Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach, Neuron, 62, 254, 10.1016/j.neuron.2009.02.027 Mali, 2013, Cas9 as a versatile tool for engineering biology, Nat. Methods, 10, 957, 10.1038/nmeth.2649 Pattanayak, 2013, High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity, Nat. Biotechnol., 31, 839, 10.1038/nbt.2673 Perez-Pinera, 2013, RNA-guided gene activation by CRISPR-Cas9-based transcription factors, Nat. Methods, 10, 973, 10.1038/nmeth.2600 Persengiev, 2004, Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs), RNA, 10, 12, 10.1261/rna5160904 Plück, 1996, Conditional mutagenesis in mice: the Cre/loxP recombination system, Int. J. Exp. Pathol., 77, 269 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021 Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143 Sauer, 1988, Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1, Proc. Natl. Acad. Sci. USA, 85, 5166, 10.1073/pnas.85.14.5166 Schnell, 2002, Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number, Proc. Natl. Acad. Sci. USA, 99, 13902, 10.1073/pnas.172511199 Silva, 1992, Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice, Science, 257, 201, 10.1126/science.1378648 Tsien, 1996, Subregion- and cell type-restricted gene knockout in mouse brain, Cell, 87, 1317, 10.1016/S0092-8674(00)81826-7 Ultanir, 2007, Regulation of spine morphology and spine density by NMDA receptor signaling in vivo, Proc. Natl. Acad. Sci. USA, 104, 19553, 10.1073/pnas.0704031104 Watkins, 1990, Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists, Trends Pharmacol. Sci., 11, 25, 10.1016/0165-6147(90)90038-A Wijshake, 2014, Endonucleases: new tools to edit the mouse genome, Biochim. Biophys. Acta, 10.1016/j.bbadis.2014.04.020 Yang, 2013, One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering, Cell, 154, 1370, 10.1016/j.cell.2013.08.022