Thermoacoustic heat engine modeling and design optimization

Applied Thermal Engineering - Tập 31 - Trang 2518-2528 - 2011
Andrew C. Trapp1, Florian Zink2, Oleg A. Prokopyev3, Laura Schaefer4
1Worcester Polytechnic Institute, School of Business, Worcester, MA 01609, USA
2IAV GmbH, Rockwellstr. 16, 38518 Gifhorn, Germany
3University of Pittsburgh, Department of Industrial Engineering, 1048 Benedum Hall, Pittsburgh, PA 15261, USA
4University of Pittsburgh, Department of Mechanical Engineering and Material Science, 153 Benedum Hall, Pittsburgh, PA 15261, USA

Tài liệu tham khảo

Garrett, 1999, Reinventing the engine, Nature, 339, 303, 10.1038/20546 Kaushik, 2000, Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses, Energy, 25, 989, 10.1016/S0360-5442(00)00023-2 Ceperley, 1985, Gain and efficiency of a short traveling wave heat engine, Journal of the Acoustical Society of America, 77, 1239, 10.1121/1.392191 Swift, 2002 Xiao, 1995, Thermoacoustic heat transportation and energy transformation, part 3: Adiabatic wall thermoacoustic effects, Cryogenics, 35, 27, 10.1016/0011-2275(95)90421-B G.W. Swift, S.N. Backhaus, D.L. Gardner, Us Patent No. 6032464 (2000). Bastyr, 2003, High-frequency thermoacoustic – Stirling heat engine demonstration device, Acoustics Research Letters Online, 4, 37, 10.1121/1.1558931 M.E. Poese, R.W. Smith, S.L. Garrett, R. van Gerwen, P. Gosselin, Thermoacoustic refrigeration for ice cream sales, in: Proceedings of the 6th IIR Gustav Lorentzen Conference (2004). Backhaus, 2000, A thermoacoustic Stirling heat engine: detailed study, Journal of the Acoustical Society of America, 107, 3148, 10.1121/1.429343 Garrett, 2000, The power of sound, American Scientist, 88, 516, 10.1511/2000.6.516 Kagawa, 2000 Tang, 2007, Thermoacoustically driven pulse tube cooler below 60 K, Cryogenics, 47, 526, 10.1016/j.cryogenics.2007.04.003 Vanapalli, 2007, 120 Hz pulse tube cryocooler for fast cooldown to 50 K, Applied Physics Letter, 90, 10.1063/1.2643073 Herman, 2006, Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration, Heat and Mass Transfer, 42, 492, 10.1007/s00231-005-0046-x Zink, 2009, Geometric optimization of a thermoacoustic regenerator, International Journal of Thermal Sciences, 48, 2309, 10.1016/j.ijthermalsci.2009.05.007 Minner, 1997, Theoretical evaluation of the optimal performance of a thermoacoustic refrigerator, ASHRAE Transactions: Symposia, 103, 873 M. Wetzel, Experimental investigation of a single plate thermoacoustic refrigerators, Ph.D. thesis, Johns Hopkins University (1998). E. Besnoin, Numerical study of thermoacoustic heat exchangers, Ph.D. thesis, Johns Hopkins University (2001). L. Zoontjens, C.Q. Howard, A.C. Zander, B.S. Cazzolato, Modelling and optimisation of acoustic inertance segments for thermoacoustic devices, in: Proceedings of Acoustics, 2006, pp. 435–441. Ueda, 2003, Experimental studies of a thermoacoustic Stirling prime mover and its application to a cooler, Journal of the Acoustical Society of America, 72, 1134, 10.1121/1.1649333 Tijani, 2002, Design of thermoacoustic refrigerators, Cryogenics, 42, 49, 10.1016/S0011-2275(01)00179-5 Miettinen, 1999 Swift, 1988, Thermoacoustic engines, Journal of the Acoustical Society of America, 84, 1145, 10.1121/1.396617 Friedman Comsol AB, 2005 The MathWorks, Inc., 2007 Grodzevich, 2006, Normalization and other topics in multiobjective optimization, 89 Perttunen, 1993, Lipschitzian optimization without the lipschitz constant, Journal of Optimization Theory and Application, 79, 157, 10.1007/BF00941892 Finkel, 2003 Dinkelbach, 1967, On non-linear fractional programming, Management Science, 13, 492, 10.1287/mnsc.13.7.492