A comparative study on performance and reliability of 32-bit binary adders
Tài liệu tham khảo
Koren, 2002
R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis (Ph.D. dissertation). Department of Information Technology and Electrical Engineering, Swiss Federal Institute Technology (ETH), Zürich, Switzerland, 1998
Ghosh, 2010, Voltage scalable high-speed robust hybrid arithmetic units using adaptive clocking, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 18, 1301, 10.1109/TVLSI.2009.2022531
Dreslinski, 2010, Near-threshold computing: reclaiming Moore׳s law through energy efficient integrated circuits, Proc. IEEE, 98, 253, 10.1109/JPROC.2009.2034764
Ghosh, 2010, Parameter variation tolerance and error resiliency: new design paradigm for the nanoscale era, Proc. IEEE, 98, 1718, 10.1109/JPROC.2010.2057230
S. Seo et al., Process variation in near-threshold wide SIMD architectures, in: Proceedings of the 49th ACM/EDAC/IEEE Design Automation Conference (DAC), 3–7 June 2012, pp. 980–987.
Markovic, 2010, Ultralow-power design in near-threshold region, Proc. IEEE, 98, 237, 10.1109/JPROC.2009.2035453
S. Jain et al., A 280mV-to-1.2V wide-operating-range IA-32 processor in 32nm CMOS, in: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC 2012), 19–23 February 2012, pp. 66–68.
Mathew, 2005, A 4-GHz 300-mW 64-bit integer execution ALU with dual supply voltages in 90-nm CMOS, IEEE J. Solid-State Circuits, 40, 44, 10.1109/JSSC.2004.838019
Ramkumar, 2012, Low-power and area-efficient carry select adder, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 20, 371, 10.1109/TVLSI.2010.2101621
Nagendra, 1996, Area-time-power tradeoffs in parallel adders, IEEE Trans. Circuits Syst. II: Analog. Digit. Signal Process., 53, 689
He, 2008, A power-delay efficient hybrid carry-lookahead/carry-select based redundant binary to two׳s complement converter, IEEE Trans. Circuits Syst. I: Regul. Pap., 55, 336, 10.1109/TCSI.2007.913610
Chang, 2005, A review of 0.18µm full adder performances for tree structured arithmetic circuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 13, 686, 10.1109/TVLSI.2005.848806
Patil, 2007, Robust energy-efficient adder topologies, 18th IEEE Symp. Comput. Arith. (ARITH’07), 16, 10.1109/ARITH.2007.31
UMA, 2012, Area, delay and power comparison of adder topologies, Int. J. VLSI Des. Commun. Syst., 3
A.N. Jayanthi, C.S. Ravichandran, Comparison of performance of high speed VLSI adders, International Conference on Current Trends in Engineering and Technology, 3-3 July 2013, pp. 99–104
V.G. Oklobdzija, B.R. Zeydel, H. Dao, S. Mathew, R. Krishnamurthy, Energy-delay estimation technique for high-performance microprocessor VLSI adders, in: Proceedings of the 16th IEEE Symposium on Computer Arithmetic, June 2003, pp. 272–279
Oklobdzija, 2005, Comparison of high-performance VLSI adders in energy-delay space, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 13, 754, 10.1109/TVLSI.2005.848819
M. Vratonjic, B.R. Zeydel, V.G. Oklobdzija, Low- and ultra low-power arithmetic units: Design and comparison, in: Proceeding of IEEE International Conference on Computer Design (ICCD): VLSI in Computers and Processors, 2–5 October 2005, pp. 249–252
Zlatanovici, 2009, Energy–delay optimization of 64-bit carry-lookahead adders with a 240ps 90nm CMOS design example, IEEE J. Solid-State Circuits (JSSC), 44, 569, 10.1109/JSSC.2008.2010795
Zeydel, 2010, Energy-efficient design methodologies: High-performance VLSI adders, IEEE J. Solid-State Circuits (JSSC), 45, 1220, 10.1109/JSSC.2010.2048730
Lin, 2007, A novel high-speed and energy efficient 10-transistor full adder design, IEEE Trans. Circuits Syst. I: Regul. Pap., 54, 1050, 10.1109/TCSI.2007.895509
Hassoune, 2010, ULPFA: a new efficient design of a power-aware full adder, IEEE Trans. Circuits Syst. I: Regul. Pap., 57, 2066, 10.1109/TCSI.2008.2001367
Ibrahim, 2010, Threshold voltage variations make full adders reliabilities similar, IEEE Trans. Nanotechnol., 9, 664, 10.1109/TNANO.2010.2066573
W. Ibrahim, A. Beg, V. Beiu, Highly reliable and low-power full adder cell, in: Proceedings of the 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 500–503, 15–18 August 2011
J. Hu, X. Yu, Near-threshold full adders for ultra low-power applications, in: Proceedings of the Second IEEE Pacific-Asia Conference on Circuits, Communications and System (PACCS), 1–2 August 2010, pp. 300–303
Islam, 2010, Energy efficient and process tolerant full adder design in near threshold region using FinFET, IEEE Int. Symp. Electron. Syst. Des. (ISED), 56
Mohapatra, 2007, Low-power process-variation tolerant arithmetic units using input-based elastic clocking, ACM/IEEE Int. Symp. Low. Power Electron. Des. (ISLPED), 74, 10.1145/1283780.1283797
Y. Chen, H. Li, J. Li, C. Koh, Variable-latency adder (VL-adder): New arithmetic circuit design practice to overcome NBTI, in: Proceedings of ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 27–29 August 2007, pp. 195–200
Chen, 2010, Variable-latency adder (VL-adder) designs for low power and NBTI tolerance, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 18, 1621, 10.1109/TVLSI.2009.2026280
Du, 2012, High performance reliable variable latency carry select addition, Design, Autom. Test. Eur. Conf. Exhib. (DATE), 1257
Bahadori, 2015, High-speed and energy-efficient carry skip adder operating under a wide range of supply voltage levels, IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
Y.H. Cho, I.C. Lin, Y.M. Yang, Aging-aware reliable multiplier design, IEEE International SOC Conference (SOCC), 12–14 September 2012, pp. 322–327.
Lin, 2015, Aging-aware reliable multiplier design with adaptive hold logic, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 23, 544, 10.1109/TVLSI.2014.2311300
H. Kukner et al., NBTI aging on 32-Bit adders in the downscaling planar FET technology nodes, in: Proceedings of the 17th IEEE Euromicro Conference on Digital System Design (DSD), 27–29 August 2014, pp. 98–107
H. Kukner et al., Degradation analysis of datapath logic subblocks under NBTI aging in FinFET technology, in: Proceedings of the 15th IEEE International Symposium on Quality Electronic Design, 3–5 March 2014, pp. 473–479
T. An, H. Cai, L.A. de Barros Naviner, Simulation study of aging in CMOS binary adders, in: Proceedings of the 37th IEEE International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 26–30 May 2014, pp. 51–55
Kogge, 1973, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Trans. Comput., C-22, 786, 10.1109/TC.1973.5009159
Brent, 1982, A regular layout for parallel adders, IEEE Trans. Comput., C-31, 260, 10.1109/TC.1982.1675982
Sklansky, 1960, Conditional-sum addition logic, IRE Trans. Electron. Comput., EC-9, 226, 10.1109/TEC.1960.5219822
D. Harris, A taxonomy of parallel prefix networks, IEEE Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, November 2003, pp. 2213-2217.
Guyot, 1987, A way to build efficient carry-skip adders, IEEE Trans. Comput., C-36, 1144, 10.1109/TC.1987.1676855
Alioto, 2003, A simple strategy for optimized design of one-level carry-skip adders, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 50, 141, 10.1109/TCSI.2002.807517
Alioto, 2011, Optimized design of parallel carry-select adders, vol. 44, 62
14nm LSTP FinFET Predictive Technology Model (PTM). Available: 〈http://www.ptm.asu.edu〉 (accessed June 2012) [Online].
NanGate 45nm Open Cell Library. Available: 〈http//www.nangate.com〉 (accessed Dec. 2010) [Online].
Cadence SOC Encounter. Available: 〈http//www.cadence.com〉, version 10.1 [Online].
Synopsys HSPICE. Available: 〈http//www.synopsys.com〉 (accessed Dec. 2013) [Online].
Colinge, 2007
Hisamoto, 2000, FinFET-a self-aligned double-gate MOSFET scalable to 20nm, IEEE Trans. Electron Dev., 47, 2320, 10.1109/16.887014
Leung, 2012, Device- and circuit-level variability caused by line edge roughness for sub-32-nm FinFET technologies, IEEE Trans. Electron Dev., 59, 2057, 10.1109/TED.2012.2199499
Baravelli, 2008, Impact of LER and random dopant fluctuations on FinFET matching performance, IEEE Trans. Nanotechnol., 7, 291, 10.1109/TNANO.2008.917838
Ye, 2010, Random variability modeling and its impact on scaled CMOS circuits, J. Comput. Electron., 9, 108, 10.1007/s10825-010-0336-5
Nam, 2014, Analysis of random variations and variation-robust advanced device structures, J. Semicond. Technol. Sci., 14, 8, 10.5573/JSTS.2014.14.1.008
Bernstein, 2006, High-performance CMOS variability in the 65-nm regime and beyond, IBM J. Res. Dev., 50, 433, 10.1147/rd.504.0433
Kuhn, 2008, Managing process variation in Intel׳s 45nm CMOS technology, Intel. Technol. J., 12, 93
K.J. Kuhn, Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS, in: Proceedings of IEEE International Electron Devices Meeting (IEDM), 10–12 December 2007, pp. 471–474
S. Banerjee, P. Elakkumanan, D. Chidambarrao, J. Culp, M. Orshansky, Analysis of systematic variation and impact on circuit performance, SPIE Advanced Lithography-International Society for Optics and Photonics, March 2008, pp. 69250K–69250K.
Orshansky, 2008
Sylvester, 2008, Variability in nanometer CMOS: Impact, analysis, and minimization, Integr. VLSI J., 41, 319, 10.1016/j.vlsi.2007.09.001
Kamal, 2015, Design of NBTI resilient extensible processors, Integr. VLSI J., 49, 22, 10.1016/j.vlsi.2014.12.001
B. Tudor et al., MOSRA: An efficient and versatile MOS aging modeling and reliability analysis solution for 45nm and below, in: Proceedings of the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 1–4 November 2010, pp. 1645–1647.
Available: 〈https://www.synopsys.com/Tools/Verification/ AMSVerification/CircuitSimulation/HSPICE/Documents/mosra-wp.pdf〉 [Online].
Paul, 2005, Impact of NBTI on the temporal performance degradation of digital circuits, IEEE Electron Device Lett., 26, 560, 10.1109/LED.2005.852523
Synopsys Design Compiler. Available: 〈www.synopsys.com〉 [Online].
NanGate 15nm FinFET Open Cell Library. Available: 〈http//www.nangate.com〉 (accessed May 2014) [Online].