A comparative study on performance and reliability of 32-bit binary adders

Integration - Tập 53 - Trang 54-67 - 2016
Milad Bahadori1, Mehdi Kamal1, Ali Afzali-Kusha1, Massoud Pedram2
1School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
2Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

Tài liệu tham khảo

Koren, 2002 R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis (Ph.D. dissertation). Department of Information Technology and Electrical Engineering, Swiss Federal Institute Technology (ETH), Zürich, Switzerland, 1998 Ghosh, 2010, Voltage scalable high-speed robust hybrid arithmetic units using adaptive clocking, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 18, 1301, 10.1109/TVLSI.2009.2022531 Dreslinski, 2010, Near-threshold computing: reclaiming Moore׳s law through energy efficient integrated circuits, Proc. IEEE, 98, 253, 10.1109/JPROC.2009.2034764 Ghosh, 2010, Parameter variation tolerance and error resiliency: new design paradigm for the nanoscale era, Proc. IEEE, 98, 1718, 10.1109/JPROC.2010.2057230 S. Seo et al., Process variation in near-threshold wide SIMD architectures, in: Proceedings of the 49th ACM/EDAC/IEEE Design Automation Conference (DAC), 3–7 June 2012, pp. 980–987. Markovic, 2010, Ultralow-power design in near-threshold region, Proc. IEEE, 98, 237, 10.1109/JPROC.2009.2035453 S. Jain et al., A 280mV-to-1.2V wide-operating-range IA-32 processor in 32nm CMOS, in: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC 2012), 19–23 February 2012, pp. 66–68. Mathew, 2005, A 4-GHz 300-mW 64-bit integer execution ALU with dual supply voltages in 90-nm CMOS, IEEE J. Solid-State Circuits, 40, 44, 10.1109/JSSC.2004.838019 Ramkumar, 2012, Low-power and area-efficient carry select adder, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 20, 371, 10.1109/TVLSI.2010.2101621 Nagendra, 1996, Area-time-power tradeoffs in parallel adders, IEEE Trans. Circuits Syst. II: Analog. Digit. Signal Process., 53, 689 He, 2008, A power-delay efficient hybrid carry-lookahead/carry-select based redundant binary to two׳s complement converter, IEEE Trans. Circuits Syst. I: Regul. Pap., 55, 336, 10.1109/TCSI.2007.913610 Chang, 2005, A review of 0.18µm full adder performances for tree structured arithmetic circuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 13, 686, 10.1109/TVLSI.2005.848806 Patil, 2007, Robust energy-efficient adder topologies, 18th IEEE Symp. Comput. Arith. (ARITH’07), 16, 10.1109/ARITH.2007.31 UMA, 2012, Area, delay and power comparison of adder topologies, Int. J. VLSI Des. Commun. Syst., 3 A.N. Jayanthi, C.S. Ravichandran, Comparison of performance of high speed VLSI adders, International Conference on Current Trends in Engineering and Technology, 3-3 July 2013, pp. 99–104 V.G. Oklobdzija, B.R. Zeydel, H. Dao, S. Mathew, R. Krishnamurthy, Energy-delay estimation technique for high-performance microprocessor VLSI adders, in: Proceedings of the 16th IEEE Symposium on Computer Arithmetic, June 2003, pp. 272–279 Oklobdzija, 2005, Comparison of high-performance VLSI adders in energy-delay space, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 13, 754, 10.1109/TVLSI.2005.848819 M. Vratonjic, B.R. Zeydel, V.G. Oklobdzija, Low- and ultra low-power arithmetic units: Design and comparison, in: Proceeding of IEEE International Conference on Computer Design (ICCD): VLSI in Computers and Processors, 2–5 October 2005, pp. 249–252 Zlatanovici, 2009, Energy–delay optimization of 64-bit carry-lookahead adders with a 240ps 90nm CMOS design example, IEEE J. Solid-State Circuits (JSSC), 44, 569, 10.1109/JSSC.2008.2010795 Zeydel, 2010, Energy-efficient design methodologies: High-performance VLSI adders, IEEE J. Solid-State Circuits (JSSC), 45, 1220, 10.1109/JSSC.2010.2048730 Lin, 2007, A novel high-speed and energy efficient 10-transistor full adder design, IEEE Trans. Circuits Syst. I: Regul. Pap., 54, 1050, 10.1109/TCSI.2007.895509 Hassoune, 2010, ULPFA: a new efficient design of a power-aware full adder, IEEE Trans. Circuits Syst. I: Regul. Pap., 57, 2066, 10.1109/TCSI.2008.2001367 Ibrahim, 2010, Threshold voltage variations make full adders reliabilities similar, IEEE Trans. Nanotechnol., 9, 664, 10.1109/TNANO.2010.2066573 W. Ibrahim, A. Beg, V. Beiu, Highly reliable and low-power full adder cell, in: Proceedings of the 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 500–503, 15–18 August 2011 J. Hu, X. Yu, Near-threshold full adders for ultra low-power applications, in: Proceedings of the Second IEEE Pacific-Asia Conference on Circuits, Communications and System (PACCS), 1–2 August 2010, pp. 300–303 Islam, 2010, Energy efficient and process tolerant full adder design in near threshold region using FinFET, IEEE Int. Symp. Electron. Syst. Des. (ISED), 56 Mohapatra, 2007, Low-power process-variation tolerant arithmetic units using input-based elastic clocking, ACM/IEEE Int. Symp. Low. Power Electron. Des. (ISLPED), 74, 10.1145/1283780.1283797 Y. Chen, H. Li, J. Li, C. Koh, Variable-latency adder (VL-adder): New arithmetic circuit design practice to overcome NBTI, in: Proceedings of ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 27–29 August 2007, pp. 195–200 Chen, 2010, Variable-latency adder (VL-adder) designs for low power and NBTI tolerance, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 18, 1621, 10.1109/TVLSI.2009.2026280 Du, 2012, High performance reliable variable latency carry select addition, Design, Autom. Test. Eur. Conf. Exhib. (DATE), 1257 Bahadori, 2015, High-speed and energy-efficient carry skip adder operating under a wide range of supply voltage levels, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. Y.H. Cho, I.C. Lin, Y.M. Yang, Aging-aware reliable multiplier design, IEEE International SOC Conference (SOCC), 12–14 September 2012, pp. 322–327. Lin, 2015, Aging-aware reliable multiplier design with adaptive hold logic, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 23, 544, 10.1109/TVLSI.2014.2311300 H. Kukner et al., NBTI aging on 32-Bit adders in the downscaling planar FET technology nodes, in: Proceedings of the 17th IEEE Euromicro Conference on Digital System Design (DSD), 27–29 August 2014, pp. 98–107 H. Kukner et al., Degradation analysis of datapath logic subblocks under NBTI aging in FinFET technology, in: Proceedings of the 15th IEEE International Symposium on Quality Electronic Design, 3–5 March 2014, pp. 473–479 T. An, H. Cai, L.A. de Barros Naviner, Simulation study of aging in CMOS binary adders, in: Proceedings of the 37th IEEE International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 26–30 May 2014, pp. 51–55 Kogge, 1973, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Trans. Comput., C-22, 786, 10.1109/TC.1973.5009159 Brent, 1982, A regular layout for parallel adders, IEEE Trans. Comput., C-31, 260, 10.1109/TC.1982.1675982 Sklansky, 1960, Conditional-sum addition logic, IRE Trans. Electron. Comput., EC-9, 226, 10.1109/TEC.1960.5219822 D. Harris, A taxonomy of parallel prefix networks, IEEE Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, November 2003, pp. 2213-2217. Guyot, 1987, A way to build efficient carry-skip adders, IEEE Trans. Comput., C-36, 1144, 10.1109/TC.1987.1676855 Alioto, 2003, A simple strategy for optimized design of one-level carry-skip adders, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 50, 141, 10.1109/TCSI.2002.807517 Alioto, 2011, Optimized design of parallel carry-select adders, vol. 44, 62 14nm LSTP FinFET Predictive Technology Model (PTM). Available: 〈http://www.ptm.asu.edu〉 (accessed June 2012) [Online]. NanGate 45nm Open Cell Library. Available: 〈http//www.nangate.com〉 (accessed Dec. 2010) [Online]. Cadence SOC Encounter. Available: 〈http//www.cadence.com〉, version 10.1 [Online]. Synopsys HSPICE. Available: 〈http//www.synopsys.com〉 (accessed Dec. 2013) [Online]. Colinge, 2007 Hisamoto, 2000, FinFET-a self-aligned double-gate MOSFET scalable to 20nm, IEEE Trans. Electron Dev., 47, 2320, 10.1109/16.887014 Leung, 2012, Device- and circuit-level variability caused by line edge roughness for sub-32-nm FinFET technologies, IEEE Trans. Electron Dev., 59, 2057, 10.1109/TED.2012.2199499 Baravelli, 2008, Impact of LER and random dopant fluctuations on FinFET matching performance, IEEE Trans. Nanotechnol., 7, 291, 10.1109/TNANO.2008.917838 Ye, 2010, Random variability modeling and its impact on scaled CMOS circuits, J. Comput. Electron., 9, 108, 10.1007/s10825-010-0336-5 Nam, 2014, Analysis of random variations and variation-robust advanced device structures, J. Semicond. Technol. Sci., 14, 8, 10.5573/JSTS.2014.14.1.008 Bernstein, 2006, High-performance CMOS variability in the 65-nm regime and beyond, IBM J. Res. Dev., 50, 433, 10.1147/rd.504.0433 Kuhn, 2008, Managing process variation in Intel׳s 45nm CMOS technology, Intel. Technol. J., 12, 93 K.J. Kuhn, Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS, in: Proceedings of IEEE International Electron Devices Meeting (IEDM), 10–12 December 2007, pp. 471–474 S. Banerjee, P. Elakkumanan, D. Chidambarrao, J. Culp, M. Orshansky, Analysis of systematic variation and impact on circuit performance, SPIE Advanced Lithography-International Society for Optics and Photonics, March 2008, pp. 69250K–69250K. Orshansky, 2008 Sylvester, 2008, Variability in nanometer CMOS: Impact, analysis, and minimization, Integr. VLSI J., 41, 319, 10.1016/j.vlsi.2007.09.001 Kamal, 2015, Design of NBTI resilient extensible processors, Integr. VLSI J., 49, 22, 10.1016/j.vlsi.2014.12.001 B. Tudor et al., MOSRA: An efficient and versatile MOS aging modeling and reliability analysis solution for 45nm and below, in: Proceedings of the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 1–4 November 2010, pp. 1645–1647. Available: 〈https://www.synopsys.com/Tools/Verification/ AMSVerification/CircuitSimulation/HSPICE/Documents/mosra-wp.pdf〉 [Online]. Paul, 2005, Impact of NBTI on the temporal performance degradation of digital circuits, IEEE Electron Device Lett., 26, 560, 10.1109/LED.2005.852523 Synopsys Design Compiler. Available: 〈www.synopsys.com〉 [Online]. NanGate 15nm FinFET Open Cell Library. Available: 〈http//www.nangate.com〉 (accessed May 2014) [Online].