Compounds of asymmetric convex bodies

Springer Science and Business Media LLC - Tập 19 - Trang 349-358 - 1974
R. J. Cook1
1Department of Pure Mathematics, The University of Sheffield, Sheffield, England

Tóm tắt

Mahler obtained inequalities relating an0-symmetric convex body with its compounds. These results are extended to asymmetric convex bodies.

Tài liệu tham khảo

R. P. Bambah,Polar reciprocal convex bodies, Proc. Cambridge Philos. Soc.51 (1955), 377–378. E. Ehrhart,Sur les ovales et les ovoïdes, C. R. Acad. Sci. Paris240 (1955), 483–485. B. Grünbaum,Measures of symmetry for convex sets, inConvexity, Amer. Math. Soc., Providence, R. I., 1963, pp. 233–270. F. John,Extremum problems with inequalities as subsidiary conditions, Studies and essays presented to R. Courant, 1948, pp. 187–204. G. G. Lekkerkerker,Geometry of numbers, North-Holland, Amsterdam, 1969. K. Mahler,On compound convex bodies (I), Proc. London Math. Soc. (3)5 (1955), 358–379. K. Mahler,The geometry of numbers, duplicated lectures, Boulder, Colordo, 1950. H. Minkowski,Geometrie der Zahlen, Chelsea, New York, 1953. C. A. Rogers,The successive minima of measurable sets, Proc. London Math. Soc. (2)51 (1949), 440–449. E. T. Whittaker and G. N. Watson,A course of modern analysis, 2nd ed., Cambridge University Press, 1915.