Compressional behavior of MgCr2O4 spinel from first-principles simulation

Science China Earth Sciences - Tập 59 - Trang 989-996 - 2016
YanYao Zhang1,2, Xi Liu1,2, ZhiHua Xiong1,2, ZhiGang Zhang3
1Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing, China
2School of Earth and Space Sciences, Peking University, Beijing, China
3Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

The compressional behavior of the MgCr2O4 spinel has been investigated with the CASTEP code using density functional theory and planewave pseudopotential technique. We treated the exchange-correlation interaction by both the local density approximation (LDA) and generalized gradient approximation (GGA) with the Perdew-Burker-Ernzerhof functional. Our simulation was conducted for the pressure range of 0–19 GPa. We obtained the isothermal bulk modulus (K T ) of the MgCr2O4 spinel as 181.46(48) GPa (GGA; low boundary) or 216.1(11) GPa (LDA; high boundary), with its first derivative (K' T ) as 4.41(6) or 4.5(1), respectively. The oxygen parameter u is not constant but negatively correlated with P, and decreases by about 0.5–0.6% for the investigated P range. The component polyhedra have different compressibilities, increasing in the order of (O4)1

Tài liệu tham khảo

Angel R J, Allan D R, Miletich R, Finger L W. 1997. The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr, 30: 461–466 Ballhaus C, Berry R F, Green D H. 1990. Oxygen fugacity controls in the Earth’s upper mantle. Nature, 349: 437–449 Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen barometer: Implications for the oxidation state of the upper mantle. Contrib Mineral Petrol, 107: 27–40 Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol, 42: 2279–2302 Barron L M. 2005. A linear model and topography for the host-inclusion mineral system involving diamond. Can Mineral, 43: 203–224 Becke A D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 98: 5648–5652 Birch F. 1947. Finite elastic strain of cubic crystals. Phys Rev, 71: 809–924 Bouhemadou A, Khenata R, Zerarga F. 2007. Ab initio study of the structural and elastic properties of spinels MgX2O4(X = Al, Ga, In) under pressure. Eur Phys J B, 56: 1–5 Catti M, Fava F F, Zicovich C, Dovesi R. 1999. High-pressure decomposition of MCr2O4 spinels (M = Mg, Mn, Zn) by ab initio methods. Phys Chem Miner, 26: 389–395 Ceperley D M, Alder B J. 1980. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 45: 566–569 Chang L L, Liu X, Liu H, Kojitani H, Wang S C. 2013. Vibrational mode analysis and heat capacity calculation of K2SiSi3O9-wadeite. Phys Chem Miner, 40: 563–574 Cookenboo H, Bustin R, Wilks K. 1997. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: Implications for orogeny in the Canadian Cordillera. J Sediment Res, 67: 116–123 D’Arco P, Silvi B, Roetti C, Orlando R. 1991. Comparative study of spinel compounds: A pseudopotential periodic Hartree-Fock calculation of Mg2SiO4, Mg2GeO4, Al2MgO4, and Ga2MgO4. J Geophys Res, 96: 6107–6112 Deng L W, Liu X, Liu H, Zhang Y G. 2011. A first-principles study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8. Am Miner, 96: 974–982 Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol, 86: 54–76 Duke J. 1983. Ore deposit models 7. Magmatic segregation deposits of chromite. Geosci Can, 10: 15–24 Fabries J. 1979. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol, 69: 329–336 Fei Y W, Ricolleau A, Frank M, Mibe K, Shen G Y, Prakapenka V. 2007. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA, 104: 9182–9186 Gracia L, Beltrán A, Andrés J, Franco R, Recio J M. 2002. Quantum-mechanical simulation of MgAl2O4 under high pressure. Phys Rev B, 66: 224114 Graham J. 1978. Manganochromite, palladium antimonide, and some unusual mineral associations at the Nairne pyrite deposit, South Australia. Am Miner, 63: 1166–1174 Hazen R M, Finger L W. 1979. Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res, 84: 6723–6728 Hill R J, Craig J R, Gibbs G V. 1979. Systematics of the spinel structure type. Phys Chem Miner, 4: 317–339 Hohenberg P, Kohn W. 1964. Inhomogeneous electron gas. Phys Rev, 136: 864–871 Howell D, Wood I G, Dobson D P, Jones A P, Nasdala L, Harris J W. 2010. Quantifying strain birefringence halos around inclusions in diamond. Contrib Mineral Petrol, 160: 705–717 Kagi H, Odake S, Fukura S, Zedgenizov D A. 2009. Raman spectroscopic estimation of depth of diamond origin: Technical developments and the application. Russ Geol Geophys, 50: 1183–1187 Karklit A, Stegantsev S, Petrova E. 1970. Properties of ceramics in the system MgO-MgCr2O4. Refract Ind Ceram, 11: 786–788 Klemme S, O’Neill H St C. 1997. The reaction MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4). Contrib Mineral Petrol, 130: 59–65 Kohn W, Sham L J. 1965. Self-consistent equations including exchange and correlation effects. Phys Rev, 140: 1133–1138 Lee M H. 1995. Advanced pseudopotentials for large scale electronic structure calculations. Doctoral Dissertation. UK: University of Cambridge Lenaz D, Logvinova A M, Princivalle F, Sobolev N V. 2009. Structural parameters of chromite included in diamond and kimberlites from Siberia: A new tool for discriminating source. Am Miner, 94: 1067–1070 Lenaz D, Skogby H, Princivalle F, Hålenius U. 2004. Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Phys Chem Miner, 31: 633–642 Lin J S, Qteish A, Payne M C, Heine V. 1993. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 47: 4174–4180 Liu L G, Mernagh T P, Jaques A L. 1990. A mineralogical Raman spectroscopy study on eclogitic garnet inclusions in diamonds from Argyle. Contrib Mineral Petrol, 105: 156–161 Liu X, O’Neill H St C. 2004. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa. J Petrol, 45: 2261–2286 Monkhorst H J, Pack J D. 1976. Special points for Brillouin-zone integrations. Phys Rev B, 13: 5188–5192 Nasdala L, Brenker F E, Glinnemann J, Hofmeister W, Gasparik T, Harris J W, Stachel T, Reese I. 2003. Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds. Eur J Mineral, 15: 931–935 Nestola F, Merli M, Nimis P, Parisatto M, Kopylova M, De Stefano A, Longo M, Ziberna L, Manghnani M. 2012. In situ analysis of garnet inclusion in diamond using single-crystal X-ray diffraction and X-ray micro-tomography. Eur J Mineral, 24: 599–606 Nestola F, Periotto B, Andreozzi G B, Bruschini E, Bosi F. 2014. Pressure-volume equation of state for chromite and magnesiochromite: A single-crystal X-ray diffraction investigation. Am Miner, 99: 1248–1253 O’Neill H St C. 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol, 77: 185–194 O’Neill H St C, Dollase W A. 1994. Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys Chem Miner, 20: 541–555 O’Neill H St C, Navrotsky A. 1983. Simple spinels: Crystallographic parameters, cation radii, lattice energies, and cation distribution. Am Miner, 68: 181–194 O’Neill H St C, Wall V J. 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol, 28: 1169–1191 Ottonello G, Civalleri B, Zuccolini M V, Zicovich-Wilson C M. 2007. Ab-initio thermal physics and Cr-isotopic fractionation of MgCr2O4. Am Miner, 92: 98–108 Paraskevopoulos G M, Economou M. 1981. Zoned Mn-rich chromite from podiform type chromite ore in serpentinites of northern Greece. Am Miner, 66: 1013–1019 Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D. 1992. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev Mod Phys, 64: 1045–1097 Perdew J P, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys Rev Lett, 77: 3865–3868 Perdew J P, Zunger A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 23: 5048–5079 Recio J M, Franco R, Pendás A M, Blanco M A, Pueyo L. 2001. Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Phys Rev B, 63: 184101 Rodríguez-Hernández P, Muñoz A. 2014. Theoretical ab initio calculations in spinels at high pressures. In: Manjon F J, Tiginyanu I, Ursaki V, eds. Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds. Springer Series in Materials Science, Vol 189. New York: Springer. 103–109 Smith F G. 1953. Historical development of inclusion thermometry. Toronto: University of Toronto Press Stachel T, Harris J W. 2008. The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol Rev, 34: 5–32 Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem, 98: 11623–11627 Wang S C, Liu X, Fei Y W, He Q, Wang H J. 2012. In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1-x Mn x )Cr2O4. Phys Chem Miner, 39: 189–198 Wang Z, O’Neill H St C, Lazor P, Saxena S K. 2002. High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids, 63: 2057–2061 Xiong Z H, Liu X, Shieh S R, Wang S C, Chang L L, Tang J J, Hong X G, Zhang Z G, Wang H J. 2016. Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation. Am Miner, 101: 277–288 Yamanaka T, Takéuchi Y. 1983. Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700°C. Z Kristallogr, 165: 65–78 Yang J S, Dobrzhinetskaya L, Bai W J, Fang Q S, Robinson P T, Zhang J F, Green II H W. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35: 875–878 Yong W J, Botis S, Shieh S R, Shi W G, Withers A C. 2012. Pressure- induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys Earth Planet Inter, 196-197: 75–82