Present and future Köppen-Geiger climate classification maps at 1-km resolution

Scientific data - Tập 5 Số 1
Hylke E. Beck1, Niklaus E. Zimmermann2, Tim R. McVicar3, Noemi Vergopolan1, Alexis Berg1, Eric F. Wood1
1Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
2Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
3CSIRO Land and Water, Canberra, ACT, Australia

Tóm tắt

AbstractWe present new global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980–2016) and for projected future conditions (2071–2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen.

Từ khóa


Tài liệu tham khảo

Köppen, W. Das geographische System der Klimate, 1–44 (Gebrüder Borntraeger: Berlin, Germany, 1936).

Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorologische Zeitschrift 1, 215–226 (1884).

Rubel, F. & Kottek, M. Comments on: “the thermal zones of the Earth” by Wladimir Köppen. (1884). Meteorologische Zeitschrift 20, 361–365 (2011).

Webber, B. L. et al. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions 17, 978–1000 (2011).

Mahlstein, I., Daniel, J. S. & Solomon, S. Pace of shifts in climate regions increases with global temperature. Nature Climate Change 3, 739–743 (2013).

Berg, A., de Noblet-Ducoudré, N., Sultan, B., Lengaigne, M. & Guimberteau, M. Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agricultural and Forest Meteorology 170, 89–102 (2013).

Bacon, S. J., Aebi, A., Calanca, P. & Bacher, S. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions 20, 84–94 (2014).

Rubel, F., Brugger, K., Haslinger, K. & Auer, I. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorologische Zeitschrift 26, 115–125 (2017).

von Humboldt, A. & Bonpland, A. Essai sur la géographie des plantes. (Maxtor, Paris, France, 1805).

Woodward, F. Climate and plant distribution. (Cambridge University Press: Cambridge, UK, 1987).

Yang, Y., Donohue, R. J., McVicar, T. R. & Roderick, M. L. An analytical model for relating global terrestrial carbon assimilation with climate and surface conditions using a rate limitation framework. Geophysical Research Letters 42, 9825–9835 (2015).

Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186 (2000).

Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371 (2003).

Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment 30, 751–777 (2006).

Luoto, M., Virkkala, R. & Heikkinen, R. K. The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography 16, 34–42 (2007).

Brugger, K. & Rubel, F. Characterizing the species composition of European Culicoides vectors by means of the Köppen-Geiger climate classification. Parasites & Vectors 6, 333 (2013).

Tererai, F. & Wood, A. R. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. South African Journal of Botany 95, 152–158 (2014).

Tarkan, A. S. & Vilizzi, L. Patterns, latitudinal clines and countergradient variation in the growth of roach Rutilus rutilus (Cyprinidae) in its Eurasian area of distribution. Reviews in Fish Biology and Fisheries 25, 587–602 (2015).

Poulter, B. et al. Plant functional type mapping for earth system models. Geoscientific Model Development 4, 993–1010 (2011).

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263 (2006).

Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644 (2007).

Kriticos, D. J. et al. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 53–64 (2012).

Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25, 693–712 (2005).

Beck, C., Grieser, J. & Rudolf, B . A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Climate Status Report 2004, German Weather Service: Offenbach, Germany, (2005).

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978 (2005).

McVicar, T. R. et al. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology 338, 196–220 (2007).

Roe, G. H. Orographic precipitation. Annual Review of Earth and Planetary Sciences 33, 645–671 (2005).

Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 5, 170122 (2017).

Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93, 485–498 (2012).

Russell, R. J. Dry climates of the United States: I climatic map, vol. 5 of Publications in Geography. (University of California, 1931).

Riahi, K. et al. RCP 8.5–a scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33 (2011).

Teutschbein, C. & Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology 456–457, 12-29 (2012).

Stephens, G. L. et al. Dreary state of precipitation in global models. Journal of Geophysical Research: Atmospheres 115 (2010).

Yu, J. H. H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climatechange. Nature Climate Change 166 (2015).

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the Global Historical Climatology Network-Daily database. Journal of Atmospheric and Oceanic Technology 29, 897–910 (2012).

Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

Pawson, S. et al. The GCM-Reality Intercomparison Project for SPARC (GRIPS): scientific issues and initial results. Bulletin of the American Meteorological Society 81, 781–796 (2000).

Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5, 424–430 (2015).

Funk, C. et al. A global satellite assisted precipitation climatology. Earth System Science Data 7, 275–287 (2015).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315 (2017).

Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. International Journal of Climatology 34, 623–642 (2014).

Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology 115, 15–40 (2014).

Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 8, 52 (2017).

Beck, H. E. et al. Figshare https://doi.org/10.6084/m9.figshare.6396959 (2018)