Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures
Tài liệu tham khảo
Hu, 1999, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, J. Am. Chem. Soc., 32, 435
Law, 2004, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res., 34, 83, 10.1146/annurev.matsci.34.040203.112300
Yuan, 2005, Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures, J. Am. Chem. Soc., 127, 14184, 10.1021/ja053463j
Liu, 2004, Mesoscale organization of CuO nanoribbons: formation of “dandelions”, J. Am. Chem. Soc., 126, 8124, 10.1021/ja048195o
Xu, 2004, Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process, J. Cryst. Growth, 273, 213, 10.1016/j.jcrysgro.2004.08.024
Zhou, 1999, A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites, Adv. Mater., 11, 850, 10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z
Cao, 2005, Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: large-scale synthesis, formation mechanism, and properties, Angew. Chem. Int. Ed., 44, 4197, 10.1002/anie.200500448
Chen, 2005, Hierarchical growth and shape evolution of HgS dendrites, Cryst. Growth Des., 5, 347, 10.1021/cg0498599
Liu, 2004, Morphology control of stolzite microcrystals with high hierarchy in solution, Angew. Chem. Int. Ed., 43, 4745, 10.1002/anie.200460090
Cheng, 2005, Evolution of single crystalline dendrites from nanoparticles through oriented attachment, J. Phys. Chem. B, 109, 794, 10.1021/jp0460240
Lu, 2004, Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods, J. Am. Chem. Soc., 126, 54, 10.1021/ja0386389
Yang, 2007, Hierarchical beta-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks, Cryst. Growth Des., 7, 2716, 10.1021/cg060530s
Yang, 2006, A facile hydrothermal route to flower-like cobalt hydroxide and oxide, Eur. J. Inorg. Chem., 4787, 10.1002/ejic.200600553
Palaniappan, 2006, Water-soluble, cyclodextrin-modified CdSe–CdS core–shell structured quantum dots, Chem. Mater., 18, 1275, 10.1021/cm051602q
Du, 2006, Controlled synthesis of Ag/TiO2 core–shell nanowires with smooth and bristled surfaces via a one-step solution route, Langmuir, 22, 1307, 10.1021/la052337q
Poovarodom, 2005, Investigation of the core–shell interface in gold@silica nanoparticles: a silica imprinting approach, Langmuir, 21, 12348, 10.1021/la052006d
Choi, 2005, Self-organized growth of Si/silica/Er2Si2O7 core–shell nanowire heterostructures and their luminescence, Nano Lett., 5, 2432, 10.1021/nl051684h
Wang, 2005, Preparation of large transparent silica monoliths with embedded photoluminescent CdSe@ZnS core/shell quantum dots, Chem. Mater., 17, 4762, 10.1021/cm050962a
Prakash, 2005, Tuning the reactivity of energetic nanoparticles by creation of a core–shell nanostructure, Nano Lett., 5, 1357, 10.1021/nl0506251
Kim, 2005, Luminescent core–shell photonic crystals from poly(phenylene ethynylene) coated silica spheres, Langmuir, 21, 5207, 10.1021/la046821p
Tang, 2006, Magnetic core–shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay, J. Phys. Chem. B, 110, 11640, 10.1021/jp060950s
Xu, 2007, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698, 10.1021/ja073057v
Guo, 2003, Fabrication of mesoporous core–shell structured titania microspheres with hollow interiors, Chem. Commun., 700, 10.1039/b212845d
Zhu, 2004, In situ vesicle–template-interface reaction to self-encapsulated microsphere CdS, J. Colloid Interface Sci., 273, 155, 10.1016/j.jcis.2004.01.064
Zheng, 2006, Metastable gamma-MnS hierarchical architectures: synthesis, characterization, and growth mechanism, J. Phys. Chem. B, 110, 8284, 10.1021/jp060351l
Hosein, 2007, Homogeneous, core–shell, and hollow-shell ZnS colloid-based photonic crystals, Langmuir, 23, 2892, 10.1021/la062592q
Jia, 2007, Fabrication of Fe3O4 core–shell polyhedron based on a mechanism analogue to Ostwald ripening process, J. Cryst. Growth, 303, 616, 10.1016/j.jcrysgro.2007.01.023
Liu, 2005, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors, Small, 1, 566, 10.1002/smll.200500020
Faust, 1989, Photocatalytic oxidation of sulfur-dioxide in aqueous suspensions of alpha-Fe2O3, J. Phys. Chem., 93, 6371, 10.1021/j100354a021
Han, 2001, The effect of Al addition on the gas sensing properties of Fe2O3-based sensors, Sens. Actuators B, 75, 18, 10.1016/S0925-4005(00)00688-2
Chen, 2005, Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater., 17, 582, 10.1002/adma.200401101
Reddy, 2007, Alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater., 17, 2792, 10.1002/adfm.200601186
Zheng, 2006, Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance, J. Phys. Chem. B, 110, 3093, 10.1021/jp056617q
Wang, 2007, Synthesis and magnetic properties of uniform hematite nanocubes, J. Phys. Chem. C, 111, 3551, 10.1021/jp068647e
Chueh, 2006, Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor–solid process, Adv. Funct. Mater., 16, 2243, 10.1002/adfm.200600499
Wu, 2006, Growth and magnetic properties of oriented alpha-Fe2O3 nanorods, J. Phys. Chem. B, 110, 18108, 10.1021/jp0644661
Liu, 2006, Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties, J. Phys. Chem. B, 110, 15218, 10.1021/jp0627473
Gong, 2002, Continuous hollow alpha-Fe2O3 and alpha-Fe fibers prepared by the sol–gel method, J. Mater. Chem., 12, 1844, 10.1039/b201243j
Wang, 2005, Preparation of Fe2O3 microcages from the core/shell structures, Mater. Lett., 59, 782, 10.1016/j.matlet.2004.11.020
Cao, 2008, Hierarchically nanostructured alpha-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment, J. Phys. Chem. C, 112, 6253, 10.1021/jp8000465
Hu, 2007, Fast production of self-assembled hierarchical alpha-Fe2O3 nanoarchitectures, J. Phys. Chem. C, 111, 11180, 10.1021/jp073073e
Zhong, 2006, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment, Adv. Mater., 18, 2426, 10.1002/adma.200600504
Cao, 2008, Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures, J. Phys. Chem. C, 112, 12149, 10.1021/jp803131u
Karunakaran, 2006, Fe2O3-photocatalysis with sunlight and UV light: oxidation of aniline, Electrochem. Commun., 8, 95, 10.1016/j.elecom.2005.10.034
Bakardjieva, 2007, Photocatalytic efficiency of iron oxides: degradation of 4-chlorophenol, J. Phys. Chem. Solids, 68, 721, 10.1016/j.jpcs.2006.12.004
Fu, 2005, Photodegradation of γ-HCH by α-Fe2O3 and the influence of fulvic acid, J. Photochem. Photobiol. A: Chem., 173, 143, 10.1016/j.jphotochem.2005.01.013
Lian, 2006, Surfactant-assisted solvothermal preparation of submicrometersized hollow hematite particles and their photocatalytic activity, Mater. Res. Bull., 41, 1192, 10.1016/j.materresbull.2005.10.022
Li, 2007, Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres, J. Phys. Chem. C, 111, 2123, 10.1021/jp066664y
Valenzuela, 2002, Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4, J. Photochem. Photobiol. A: Chem., 148, 177, 10.1016/S1010-6030(02)00040-0
Cao, 2009, ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol, J. Hazardous Mater., 171, 431, 10.1016/j.jhazmat.2009.06.019