Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures

Journal of Physics and Chemistry of Solids - Tập 71 - Trang 1680-1683 - 2010
Shao-Wen Cao1, Ying-Jie Zhu1, Guo-Feng Cheng1, Yue-Hong Huang1
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China

Tài liệu tham khảo

Hu, 1999, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, J. Am. Chem. Soc., 32, 435 Law, 2004, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res., 34, 83, 10.1146/annurev.matsci.34.040203.112300 Yuan, 2005, Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures, J. Am. Chem. Soc., 127, 14184, 10.1021/ja053463j Liu, 2004, Mesoscale organization of CuO nanoribbons: formation of “dandelions”, J. Am. Chem. Soc., 126, 8124, 10.1021/ja048195o Xu, 2004, Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process, J. Cryst. Growth, 273, 213, 10.1016/j.jcrysgro.2004.08.024 Zhou, 1999, A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites, Adv. Mater., 11, 850, 10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z Cao, 2005, Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: large-scale synthesis, formation mechanism, and properties, Angew. Chem. Int. Ed., 44, 4197, 10.1002/anie.200500448 Chen, 2005, Hierarchical growth and shape evolution of HgS dendrites, Cryst. Growth Des., 5, 347, 10.1021/cg0498599 Liu, 2004, Morphology control of stolzite microcrystals with high hierarchy in solution, Angew. Chem. Int. Ed., 43, 4745, 10.1002/anie.200460090 Cheng, 2005, Evolution of single crystalline dendrites from nanoparticles through oriented attachment, J. Phys. Chem. B, 109, 794, 10.1021/jp0460240 Lu, 2004, Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods, J. Am. Chem. Soc., 126, 54, 10.1021/ja0386389 Yang, 2007, Hierarchical beta-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks, Cryst. Growth Des., 7, 2716, 10.1021/cg060530s Yang, 2006, A facile hydrothermal route to flower-like cobalt hydroxide and oxide, Eur. J. Inorg. Chem., 4787, 10.1002/ejic.200600553 Palaniappan, 2006, Water-soluble, cyclodextrin-modified CdSe–CdS core–shell structured quantum dots, Chem. Mater., 18, 1275, 10.1021/cm051602q Du, 2006, Controlled synthesis of Ag/TiO2 core–shell nanowires with smooth and bristled surfaces via a one-step solution route, Langmuir, 22, 1307, 10.1021/la052337q Poovarodom, 2005, Investigation of the core–shell interface in gold@silica nanoparticles: a silica imprinting approach, Langmuir, 21, 12348, 10.1021/la052006d Choi, 2005, Self-organized growth of Si/silica/Er2Si2O7 core–shell nanowire heterostructures and their luminescence, Nano Lett., 5, 2432, 10.1021/nl051684h Wang, 2005, Preparation of large transparent silica monoliths with embedded photoluminescent CdSe@ZnS core/shell quantum dots, Chem. Mater., 17, 4762, 10.1021/cm050962a Prakash, 2005, Tuning the reactivity of energetic nanoparticles by creation of a core–shell nanostructure, Nano Lett., 5, 1357, 10.1021/nl0506251 Kim, 2005, Luminescent core–shell photonic crystals from poly(phenylene ethynylene) coated silica spheres, Langmuir, 21, 5207, 10.1021/la046821p Tang, 2006, Magnetic core–shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay, J. Phys. Chem. B, 110, 11640, 10.1021/jp060950s Xu, 2007, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698, 10.1021/ja073057v Guo, 2003, Fabrication of mesoporous core–shell structured titania microspheres with hollow interiors, Chem. Commun., 700, 10.1039/b212845d Zhu, 2004, In situ vesicle–template-interface reaction to self-encapsulated microsphere CdS, J. Colloid Interface Sci., 273, 155, 10.1016/j.jcis.2004.01.064 Zheng, 2006, Metastable gamma-MnS hierarchical architectures: synthesis, characterization, and growth mechanism, J. Phys. Chem. B, 110, 8284, 10.1021/jp060351l Hosein, 2007, Homogeneous, core–shell, and hollow-shell ZnS colloid-based photonic crystals, Langmuir, 23, 2892, 10.1021/la062592q Jia, 2007, Fabrication of Fe3O4 core–shell polyhedron based on a mechanism analogue to Ostwald ripening process, J. Cryst. Growth, 303, 616, 10.1016/j.jcrysgro.2007.01.023 Liu, 2005, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors, Small, 1, 566, 10.1002/smll.200500020 Faust, 1989, Photocatalytic oxidation of sulfur-dioxide in aqueous suspensions of alpha-Fe2O3, J. Phys. Chem., 93, 6371, 10.1021/j100354a021 Han, 2001, The effect of Al addition on the gas sensing properties of Fe2O3-based sensors, Sens. Actuators B, 75, 18, 10.1016/S0925-4005(00)00688-2 Chen, 2005, Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater., 17, 582, 10.1002/adma.200401101 Reddy, 2007, Alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater., 17, 2792, 10.1002/adfm.200601186 Zheng, 2006, Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance, J. Phys. Chem. B, 110, 3093, 10.1021/jp056617q Wang, 2007, Synthesis and magnetic properties of uniform hematite nanocubes, J. Phys. Chem. C, 111, 3551, 10.1021/jp068647e Chueh, 2006, Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor–solid process, Adv. Funct. Mater., 16, 2243, 10.1002/adfm.200600499 Wu, 2006, Growth and magnetic properties of oriented alpha-Fe2O3 nanorods, J. Phys. Chem. B, 110, 18108, 10.1021/jp0644661 Liu, 2006, Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties, J. Phys. Chem. B, 110, 15218, 10.1021/jp0627473 Gong, 2002, Continuous hollow alpha-Fe2O3 and alpha-Fe fibers prepared by the sol–gel method, J. Mater. Chem., 12, 1844, 10.1039/b201243j Wang, 2005, Preparation of Fe2O3 microcages from the core/shell structures, Mater. Lett., 59, 782, 10.1016/j.matlet.2004.11.020 Cao, 2008, Hierarchically nanostructured alpha-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment, J. Phys. Chem. C, 112, 6253, 10.1021/jp8000465 Hu, 2007, Fast production of self-assembled hierarchical alpha-Fe2O3 nanoarchitectures, J. Phys. Chem. C, 111, 11180, 10.1021/jp073073e Zhong, 2006, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment, Adv. Mater., 18, 2426, 10.1002/adma.200600504 Cao, 2008, Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures, J. Phys. Chem. C, 112, 12149, 10.1021/jp803131u Karunakaran, 2006, Fe2O3-photocatalysis with sunlight and UV light: oxidation of aniline, Electrochem. Commun., 8, 95, 10.1016/j.elecom.2005.10.034 Bakardjieva, 2007, Photocatalytic efficiency of iron oxides: degradation of 4-chlorophenol, J. Phys. Chem. Solids, 68, 721, 10.1016/j.jpcs.2006.12.004 Fu, 2005, Photodegradation of γ-HCH by α-Fe2O3 and the influence of fulvic acid, J. Photochem. Photobiol. A: Chem., 173, 143, 10.1016/j.jphotochem.2005.01.013 Lian, 2006, Surfactant-assisted solvothermal preparation of submicrometersized hollow hematite particles and their photocatalytic activity, Mater. Res. Bull., 41, 1192, 10.1016/j.materresbull.2005.10.022 Li, 2007, Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres, J. Phys. Chem. C, 111, 2123, 10.1021/jp066664y Valenzuela, 2002, Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4, J. Photochem. Photobiol. A: Chem., 148, 177, 10.1016/S1010-6030(02)00040-0 Cao, 2009, ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol, J. Hazardous Mater., 171, 431, 10.1016/j.jhazmat.2009.06.019