The liquid-ordered phase in membranes
Tài liệu tham khảo
Quinn, 2002, Plasma membrane phospholipid asymmetry, Subcell. Biochem., 36, 39, 10.1007/0-306-47931-1_3
Daleke, 2008, Regulation of phospholipid asymmetry in the erythrocyte membrane, Curr. Opin. Hematol., 15, 191, 10.1097/MOH.0b013e3282f97af7
Fairn, 2008, Cell biology — a one-sided signal, Science, 320, 458, 10.1126/science.1158173
Mayor, 2004, Rafts: scale-dependent, active lipid organization at the cell surface, Traffic, 5, 231, 10.1111/j.1600-0854.2004.00172.x
Chiu, 2002, Cholesterol-induced modifications in lipid bilayers: a simulation study, Biophys. J., 83, 1842, 10.1016/S0006-3495(02)73949-0
Pandit, 2004, Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine, Biophys. J., 87, 3312, 10.1529/biophysj.104.046078
Mombelli, 2003, Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study, Biophys. J., 84, 1507, 10.1016/S0006-3495(03)74963-7
Ohvo-Rekila, 2002, Cholesterol interactions with phospholipids in membranes, Progr. Lipid Res., 41, 66, 10.1016/S0163-7827(01)00020-0
Zhang, 2007, Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol, J. Phys. Chem. B, 111, 12888, 10.1021/jp074037i
Aittoniemi, 2007, Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine, Biophys. J., 92, 1125, 10.1529/biophysj.106.088427
Niemela, 2007, Assessing the nature of lipid raft membranes, Plos Comput. Biol., 3, 304, 10.1371/journal.pcbi.0030034
Rog, 2007, What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine-sterol interaction, Biophys. J., 92, 3346, 10.1529/biophysj.106.095497
Jungner, 1997, Interfacial regulation of bacterial sphingomyelinase activity, Biochim. Biophys. Acta, 1344, 230, 10.1016/S0005-2760(96)00147-6
Slotte, 1992, Enzyme-catalysed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free-cholesterol clusters disappear, Biochemistry, 31, 5472, 10.1021/bi00139a008
Niemela, 2004, Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine, Biophys. J., 87, 2976, 10.1529/biophysj.104.048702
Li, 2000, Sphingomyelin interfacial behavior: the impact of changing acyl chain composition, Biophys. J., 78, 1921, 10.1016/S0006-3495(00)76740-3
Prenner, 2007, Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers, Chem. Phys. Lipids, 145, 106, 10.1016/j.chemphyslip.2006.11.002
Vollhardt, 1976, Surface-potential studies on difficulty soluble monolayers, Zeitschrift Fur Chemie, 16, 245-245
Bockris, 1990, Water-structure at interfaces — the present situation, Adv. Colloid Interface Sci., 33, 1, 10.1016/0001-8686(90)80030-4
Marsh, 1996, Lateral pressure in membranes, Biochim. Biophys. Acta, 1286, 183, 10.1016/S0304-4157(96)00009-3
Zidovetzki, 2007, Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies, Biochim. Biophys. Acta, 1768, 1311, 10.1016/j.bbamem.2007.03.026
Puglisi, 1996, Interaction of natural and modified beta-cyclodextrins with a biological membrane model of dipalmitoylphosphatidylcholine, J. Colloid Interface Sci., 180, 542, 10.1006/jcis.1996.0335
Leventis, 2001, Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol, Biophys. J., 81, 2257, 10.1016/S0006-3495(01)75873-0
Ohvo, 1996, Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate, Biochemistry, 35, 8018, 10.1021/bi9528816
Leathes, 1925, Role of fats in vital phenomena, Lancet, 1, 853, 10.1016/S0140-6736(01)22310-1
Lancelot, 2007, Comparison of the interaction of dihydrochole sterol and cholesterol with sphingolipid or phospholipid Langmuir monolayers, Colloids Surfaces B-Biointerfaces, 59, 81, 10.1016/j.colsurfb.2007.04.017
Mattjus, 1995, Lateral domain formation in cholesterol phospholipid monolayers as affected by the sterol side chain conformation, Biochim. Biophys. Acta, 1240, 237, 10.1016/0005-2736(95)00179-4
Slotte, 1995, Lateral domain heterogeneity in cholesterol phosphatidylcholine monolayers as a function of cholesterol concentration and phosphatidylcholine acyl-chain length, Biochim. Biophys. Acta, 1238, 118, 10.1016/0005-2736(95)00127-O
Gronberg, 1991, Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers, Biochemistry, 30, 10746, 10.1021/bi00108a020
Bittman, 1994, Interaction of cholesterol with sphingomyelin in monolayers and vesicles, Biochemistry, 33, 11776, 10.1021/bi00205a013
Ramstedt, 1999, Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length, Biophys. J., 76, 908, 10.1016/S0006-3495(99)77254-1
Benvegnu, 1993, Surface dipole densities in lipid monolayers, J. Phys. Chem., 97, 6686, 10.1021/j100127a019
Graves, 2007, Factors affecting the concentration of sphingomyelin in bovine milk, J. Dairy Sci., 90, 706, 10.3168/jds.S0022-0302(07)71554-0
Maulik, 1996, N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine, Biochemistry, 35, 8025, 10.1021/bi9528356
McIntosh, 1992, Structure and cohesive properties of sphingomyelin cholesterol bilayers, Biochemistry, 31, 2012, 10.1021/bi00122a017
Nyholm, 2003, A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelin, or phosphatidylcholine, Biophys. J., 84, 3138, 10.1016/S0006-3495(03)70038-1
Estep, 1981, Thermal-behavior studies stearoylsphingomyelin–cholesterol dispersions, Biochemistry, 20, 7115, 10.1021/bi00528a010
Estep, 1979, Thermal-behavior of synthetic sphingomyelin–cholesterol dispersions, Biochemistry, 18, 2112, 10.1021/bi00577a042
Pokorny, 2006, Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC, Biophys. J., 91, 2184, 10.1529/biophysj.106.085027
Calhoun, 1979, Sphingomyelin–lecithin bilayers and their interaction with cholesterol, Biochemistry, 18, 1717, 10.1021/bi00576a013
Niu, 2002, Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition, Biophys. J., 83, 3408, 10.1016/S0006-3495(02)75340-X
Tsamaloukas, 2006, Nonideal mixing in multicomponent lipid/detergent systems, J. Physics-Conden. Matter, 18, S1125, 10.1088/0953-8984/18/28/S02
Fridriksson, 1999, Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry, Biochemistry, 38, 8056, 10.1021/bi9828324
Greenwood, 2006, Partial molecular volumes of lipids and cholesterol, Chem. Phys. Lipids, 143, 1, 10.1016/j.chemphyslip.2006.04.002
Recktenwald, 1981, Lateral phase separations in binary-mixtures of phosphatidylcholine and cholesterol, Biophys. J., 33, A191
Ipsen, 1987, Phase-equilibria in the phosphatidylcholine-cholesterol system, Biochim. Biophys. Acta, 905, 162, 10.1016/0005-2736(87)90020-4
Sperotto, 1989, Theory of protein-induced lateral phase separation in lipid membranes, Cell Biophys., 14, 79, 10.1007/BF02797393
Chachaty, 1995, Determination of electron spin resonance static and dynamic parameters by automated fitting of the spectra, J. de Physique Iii, 5, 1927, 10.1051/jp3:1995240
Collado, 2005, Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy, Biochemistry, 44, 4911, 10.1021/bi0474970
Chachaty, 2005, Building up of the liquid-ordered phase formed by sphingomyelin and cholesterol, Biophys. J., 88, 4032, 10.1529/biophysj.104.054155
Wolf, 2001, Cholesterol favors phase separation of sphingomyelin, Biophys. Chem., 89, 163, 10.1016/S0301-4622(00)00226-X
Wolf, 2000, Compared effects of cholesterol and 7-dehydrocholesterol on sphingomyelin–glycerophospholipid bilayers studied by ESR, Biophys. Chem., 84, 269, 10.1016/S0301-4622(00)00135-6
Pan, 2008, Cholesterol perturbs lipid bilayers nonuniversally, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.198103
Cullis, 1980, The bilayer stabilizing role of sphingomyelin in the presence of cholesterol — a P-31 NMR-study, Biochim. Biophys. Acta, 597, 533, 10.1016/0005-2736(80)90225-4
Schmidt, 1977, Nuclear magnetic resonance study of sphingomyelin in bilayer systems, Biochemistry, 16, 2649, 10.1021/bi00631a011
Malcolm, 2005, A study of the headgroup motion of sphingomyelin using P-31 NMR and an analytically soluble model, Solid State Nucl. Mag. Res., 27, 247, 10.1016/j.ssnmr.2005.02.002
Bruzik, 1990, Nuclear magnetic resonance study of sphingomyelin bilayers, Biochemistry, 29, 4017, 10.1021/bi00468a032
Guo, 2002, A solid-state NMR study of phospholipid–cholesterol interactions: sphingomyelin–cholesterol binary systems, Biophys. J., 83, 1465, 10.1016/S0006-3495(02)73917-9
Aussenac, 2003, Cholesterol dynamics in membranes of raft composition: a molecular point of view from H-2 and P-31 solid-state NMR, Biochemistry, 42, 1383, 10.1021/bi026717b
Bunge, 2008, Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures, Biophys. J., 94, 2680, 10.1529/biophysj.107.112904
Holland, 2006, Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with P-31 MAS NMR, Biophys. J., 90, 4248, 10.1529/biophysj.105.077289
Costello, 2008, Using P-31 MAS NMR to monitor a gel phase thermal disorder transition in sphingomyelin/cholesterol bilayers, Biochim. Biophys. Acta, 1778, 97, 10.1016/j.bbamem.2007.08.031
Filippov, 2003, The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers, Biophys. J., 84, 3079, 10.1016/S0006-3495(03)70033-2
Filippov, 2006, Sphingomyelin structure in. uences the lateral diffusion and raft formation in lipid bilayers, Biophys. J., 90, 2086, 10.1529/biophysj.105.075150
Filippov, 2007, Domain formation in model membranes studied by pulsed-field gradient-NMR: the role of lipid polyunsaturation, Biophys. J., 93, 3182, 10.1529/biophysj.107.111534
Lindblom, 2007, Order and disorder in a liquid crystalline bilayer: pulsed field gradient NMR studies of lateral phase separation, J. Dispers. Sci. Technol., 28, 55, 10.1080/01932690600992522
Oradd, 2005, Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer: a Pfg-NMR multinuclear study, Biophys. J., 89, 315, 10.1529/biophysj.105.061762
Shahedi, 2006, Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure, Biophys. J., 91, 2501, 10.1529/biophysj.106.085480
Koumanov, 2005, Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes, Archiv. Biochem. Biophys., 434, 150, 10.1016/j.abb.2004.10.025
Barenholz, 2002, Cholesterol and other membrane active sterols: from membrane evolution to "rafts", Progr. Lipid Res., 41, 1, 10.1016/S0163-7827(01)00016-9
Ivanov, 2007, Allometric dependence of the life span of mammal erythrocytes on thermal stability and sphingomyelin content of plasma membranes, Comp. Biochem. Physiol. Mol. Integr. Physiol., 147, 876, 10.1016/j.cbpa.2007.02.016
Albi, 1999, Nuclear membrane sphingomyelin–cholesterol changes in rat liver after hepatectomy, Biochem. Biophys. Res. Commun., 262, 692, 10.1006/bbrc.1999.1188
Holopainen, 2004, Evidence for the lack of a specific interaction between cholesterol and sphingomyelin, Biophys. J., 86, 1510, 10.1016/S0006-3495(04)74219-8
Mannock, 2003, Effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayer membranes, Biophys. J., 84, 1038, 10.1016/S0006-3495(03)74920-0
Lalitha, 2001, Enantiospecificity of sterol–lipid interactions: first evidence that the absolute configuration of cholesterol affects the physical properties of cholesterol-sphingomyelin membranes, Chem. Commun., 1192, 10.1039/b104081m
Arsov, 2008, Detection of lipid phase coexistence and lipid interactions in sphingomyelin/cholesterol membranes by ATR-FTIR spectroscopy, Biochim. Biophys. Acta, 1778, 880, 10.1016/j.bbamem.2007.12.012
Nylund, 2006, Molecular features of phospholipids that affect glycolipid transfer protein-mediated galactosylceramide transfer between vesicles, Biochim. Biophys. Acta, 1758, 807, 10.1016/j.bbamem.2006.04.023
Hill, 2000, Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes, J. Biol. Chem., 275, 30176, 10.1074/jbc.M003494200
Gensure, 2006, Lipid raft components cholesterol and sphingomyelin increase H+/OH-permeability of phosphatidylcholine membranes, Biochem. J., 398, 485, 10.1042/BJ20051620
Rawicz, 2008, Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids, Biophys. J., 94, 4725, 10.1529/biophysj.107.121731
Feigenson, 2007, Phase boundaries and biological membranes, Ann. Rev. Biophys. Biomol. Struct., 36, 63, 10.1146/annurev.biophys.36.040306.132721
Zhao, 2007, Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol, Biochim. Biophys. Acta, 1768, 2764, 10.1016/j.bbamem.2007.07.008
