State, source and triggering mechanism of iron and manganese pollution in groundwater of Changchun, Northeastern China

Oluwafemi Adewole Adeyeye1, Changlai Xiao1, Zhihao Zhang1, Xiujuan Liang1
1Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun 130021, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achary, G. S. (2014). Studies on ground water pollution due to iron content in Cuttack City, Odisha, India. International Journal of Multidisciplinary and Current Research, 2(1), 86–89 http://ijmcr.com.

Annals of Changchun (1995) Physical geography, Changchun Local Chronicles Compilation Committee . Jilin literature and history press, Changchun. p559.

Ayotte, J.D., Nielson, M.G., Robinson, G.R. Jr. & Moore, R.B. (1999). Relation of arsenic, iron, and manganese in groundwater to aquifer type, bedrock, lithogeochemistry, and land use in New England coastal basin. U.S. Geological Survey:Water-Resources Investigation Report 99–4162. Available at http://water.usgs.gov/pubs/wri/wri994162

Back, W. & Barnes, I. (1965). Relation of electrochemical potentials and iron content to ground-water flow patterns. Hydrology of Aquifer System, 22.

Beqiraj, A., & Beqiraj, E. (2011). Effects of sediment mineralogy to high-iron content in the groundwater of Rrogozhina aquifer (Western Albania). Studia Universitatis Babes-Bolyai, Geologia, 56(2), 25–30 http://scholarcommons.usf.edu/geologia/vol56/iss2/art3/.

Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science & Technology, 35(13), 2621–2626.

Bouchard, M., Laforest, F., & Vandelac, L. (2007). Children’s health hair manganese and hyperactive behaviors: Pilot study of school-age children exposed through tap water. Research, 1, 122–127.

Bouchard, M. F., Sauvé, S., Barbeau, B., et al. (2010). Intellectual impairment in school-age children exposed to manganese from drinking water [J]. Environmental Health Perspectives, 119, 138–143.

Carretero, S., & Kruse, E. (2014). Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires province Argentina. Environment and Earth Science, 73(5), 1983–1995.

Caschetto, M., Barbieri, M., Galassi, D. M. P., et al. (2014). Human alteration of groundwater – Surface water interactions (Sagittario River, Central Italy): Implication for flow regime. Contaminant Fate and Invertebrate Response, 1791–1807.

Changchun Bureau of Statistics (2017). Changchun statistical year book. Chinese Statistics Press, pp 61–64.

Changchun Water Affairs Bureau (2018). Changchun city water resources bulletin. 1122010001382739X6/2019–00497. Available online at: http://zwgk.changchun.gov.cn/zcbm/fgw_98087/gkml/201912/t20191212_2092914.html. Accessed 20th July, 2020.

Changchun Water Conservancy Bureau (2017). Changchun area water resource bulletin. Available online at: www.changchun.gov.cn. Accessed 11 March 2020.

Chapelle, F. H. (2000). The significance of microbial processes in hydrogeology and geochemistry. Hydrogeology Journal, 8, 41–46.

Chen, J., Gu, B., Royer, R. A., & Burgos, W. D. (2003). The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci. Total Environ., 307(1–3), 167–178.

De Meyer, C. M. C., Rodriquez, J. M., Caprio, E. A., et al. (2017). Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru). Sci. Total Environ., 607–608, 1437–1450. https://doi.org/10.1016/j.scitotenv.2017.07.059.

Demlie, M., Hingston, E., & Mnisi, Z. (2014). A study of the sources, human health implications and low cost treatment options of iron rich groundwater in the northeastern coastal areas of KwaZulu-Natal, South Africa. Journal of Geochemical Exploration, 144(PC), 504–510. https://doi.org/10.1016/j.gexplo.2014.05.011.

Fan, Y., Zhang, G., Yin, X. R., Liu, Z. J., & Huang, G. G. (2011). Study on capillary rise from shallow groundwater and critical water table depth of a saline-sodic soil in western Songnen plain of China. Journal of Environment and Earth Science, 64(8), 2119–2126.

Gerringa, L. J. A., Rijkenberg, M. J. A., Bown, J., Margolin, A. R., Laan, P., & de Baar, H. J. W. (2016). Fe-binding dissolved organic ligands in the oxic and suboxic waters of the Black Sea. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00084.

Gilkes, R. J., & McKenzie, R. M. (1988). Geochemistry of manganese in soils. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 23–35). Dordrecht: Kluwer.

Groschen, G.E., Arnold, T.L., Morrow, W.S. and Warner, K.L. (2009). Occurrence and distribution of iron, manganese and selected trace elements in groundwater in the glacial aquifer system of north United States. U.S. Geological Survey Scientific Investigation Report 2009–5006, 89p.

Gui-shan, H. (2011). The study on the biological removal of iron and manganese in the groundwater of northeast rural area. Unpub. Doctoral dissertation, Jilin University), 55p (in Chinese).

Guo, X., Zuo, R., Meng, L., Wang, J., Teng, Y., Liu, X., & Chen, M. (2018). Seasonal and spatial variability of anthropogenic and natural factors influencing groundwater quality based on source apportionment. International Journal of Environmental Research and Public Health, 15, 279.

Hao, Y. (2017). Study on spatiotemporal evolution of characteristics of groundwater quantity in plain areas of Jilin Province. Unpub. Doctoral dissertation, Jilin University, 83p (in Chinese).

Hem, J. D. (1963). Chemical equilibria affecting the behavior of manganese in natural water. Hydrological Sciences Journal, 8(3), 30–37. https://doi.org/10.1080/02626666309493334.

Hem, J. D. (1985). Study and interpretation of chemical characteristics of natural waters, (3rd Ed). U.S. Geological Survey Water-Supply Paper 2254.

Hossain, D., Islam, M. S., Sultana, N., & Tusher, T. R. (2015). Assessment of iron contamination in groundwater at Tangail municipality, Bangladesh. J. of Environ. Sci. & Natural Resources, 6(1), 117–121.

Howard, G., Bartram, J., Pedley, S., Schmoll, O., Chorus, I., & Berger, P. (2006). Groundwater and public health. In O. Schmoll, G. Howard, J. Chilton, & I. Chorus (Eds.), Protecting groundwater for health: Managing the quality of drinking-water sources (17p). IWA: WHO.

Hrachowitz, M., Soulsby, C., Tetzlaff, D. et al. (2009). Regionalization of transit time estimates in montane catchments by integrating landscape controls. 45(January).

Huang, B., Li, Z., Chen, Z., Chen, G., Zhang, C., Huang, J., Nie, X., Xiong, W., & Zeng, G. (2015). Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River. Environmental Science and Pollution Research, 22(24), 19912–19921.

Huang, L., Wang, L., Zhang, Y., Xing L., Hao Q., Xiao Y., Yang L., Zhu H. (2018). Identification of groundwater pollution sources by a SCE-UA algorithm-based. Water 10(193).

IUSS Working Group WRB (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Jenčo, M., Matečný, I., Putiška, R., Burian, L., Tančárová, K., & Kušnirák, D. (2018). Umbrisols at lower altitudes, case study from Borská lowland (Slovakia). Open Sci. De Gruyter, 10, 121–136. https://doi.org/10.1515/geo-2018-0010.

Jenne, E. A. (1968). Controls on Mn, Fe Co, Ni, Cu and Zn concentrations in soils and waters: the significant role of hydrous Mn and Fe oxides. Am Chem Soc 337–387.

Jia, Y., Xi, B., Jiang, Y., Guo, H., Yang, Y., Lian, X., & Han, S. (2018). Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Sci. Total. Environ, 643, 967–999.

Kaiser, H.F. (1960). Consequently perhaps. Educational and Psychological Measurement XX(1), 141–51.

Kim, D. M., Yun, S. T., Man, J. K., Mayer, B., & Kim, K. H. (2014). Assessing redox zones and seawater intrusion in a coastal aquifer in South Korea using hydrogeological, chemical and isotopic approaches. Chemical Geology, 390, 119–134.

Krupinska, I. (2017). Effects of organic substances on the efficiency of Fe(II) to Fe(III) oxidation and removal of iron compounds from groundwater in sedimentation process. Civil Env. Eng. Reports, 26(3), 015–029. https://doi.org/10.1515/ceer-2017-0032.

Kshetrimayum, K. S., & Hegeu, H. (2016). The state of toxicity and cause of elevated iron and manganese concentrations in surface water and groundwater around Naga thrust of Assam-Arakan Basin, northeastern India. Environment and Earth Science, 75(7), 1–14.

Langmuir, D. (1997). Aqueous environmental geochemistry. New Jersey: Prentice Hall.

Lindsay, W.L. (1991). Iron oxide solubilization by organic matter and its effect on iron availability. Iron Nutrition and Interactions in Plants. Springer Netherlands, pp 29–36.

Luu, T. (2017). Remarks on the current quality of groundwater in Vietnam. Water Industry: Water-Energy-Health Nexus. Env. Sci. Pollu. Res.. DOI https://doi.org/10.1007/s11356-017-9631-z.

Martin, S. (2005). Precipitation and dissolution of iron and manganese oxides. Environ. Catalysis (September): 61–82. http://www.crcnetbase.com/doi/10.1201/9781420027679.ch3.

Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., & Forrester, M. M. (2016). The imprint of climate and geology on the residence times of groundwater. Geophysical Research Letters, 43, 701–708. https://doi.org/10.1002/2015GL066916.

Mcguire, K.J., Mcdonnell, J.J., Weiler, M., Kendall, C., Mcglynn, B.L. & Welker, J.M. et al. (2005). The role of topography on catchment-scale water residence time. Water Resources Research, 41(5), n/a-n/a.

Minnesota Pollution Control Agency (1999) Iron in Minnesota’s ground water. Groundwater monitoring and assessment programme.

Moyosore, J. O., Coker, A. O., Sridhar, M. K. C., & Mumuni, A. (2014). Iron and manganese levels of groundwater in selected areas in Ibadan and feasible. Engr. Solution, 10(11), 137–153.

National Environmental Protection Standard (2009) Technical requirements for water quality sampling scheme design, HJ495.

National Standardization Administration (2017) Standard for groundwater quality. General administration of quality supervision, inspection and quarantine of the People’s Republic of China. GB14848.

National Standardization Administration of China (2007a). Standard examination methods for drinking water: organoleptic and physical parameters (GB/T 5750.4–2006) (1st ed.); China Standard Press: Beijing, China. (In Chinese).

National Standardization Administration of China. (2007b). Standard examination methods for drinking water: Metal parameters (GB/T 5750.6–2006) (1st ed.). China Standard Press: Beijing (In Chinese).

National Standardization Administration of China. (2007c). Standard examination methods for drinking water: Nonmetal parameters (GB/T 5750.5–2006) (1st ed.). China Standard Press: Beijing (In Chinese).

Palmucci, W., Rusi, S., & Di Curzio, D. (2016). Mobilisation processes responsible for iron and manganese contamination of groundwater in central Adriatic Italy. Environmental Science and Pollution Research, 23(12), 11790–11805.

Pezzetta, E., Lutman, A., Martinuzzi, I., Viola, C., Bernardis, G., & Fuccaro, V. (2011). Iron concentrations in selected groundwater samples from the lower Friulian plain, Northeast Italy: Importance of salinity. Environment and Earth Science, 62(2), 377–391. https://doi.org/10.1007/s12665-010-0533-3.

Pham, A. N., Rose, A. L., Feitz, A. J., & Waite, T. D. (2004). The effect of dissolved natural organic matter on rate of removal of ferrous iron in fresh water. Water Supply, 4(4), 213–219. https://doi.org/10.2166/ws.2004.0080.

Qiao, Y. (2016). Study on the spatial and temporal evolution of groundwater in the central plain of Jilin province. Unpub. Doctoral dissertation, Jilin University, 78p (in Chinese).

Rao, N. S. (2006). Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environmental Geology, 49(3), 413–429.

Rodgers, P., Soulsby, C., Petry, J., Malcolm, I., Gibbins, C., & Dunn, S. (2004). Groundwater-surface-water interactions in a braided river: A tracer-based assessment. Hydrological Processes, 18, 1315–1332.

Rotiroti, M. (2013). Hydrogeology and hydrogeochemistry of As, Fe, Mn rich groundwater of the multi-layer aquifer in the lower Po Plain, Lombardy region (northern Italy). Doctoral Thesis, Uni. Milano-Bicocca.

Rotiroti, M., Elisa, S., Fumagalli, L., & Bonomi, T. (2014). Origin of arsenic in groundwater from the multilayer aquifer in Cremona (northern Italy). Environmental Science & Technology, 48(10), 5395–5403.

Roychoudhury, A. N., & Merrett, G. L. (2006). Redox pathways in a petroleum contaminated shallow sandy aquifer: Iron and sulfate reductions. Science of the Total Environment, 366(1), 262–274.

Soulsby, C., Rodgers, P., Smart, R., Dawson, J., & Dunn, S. (2003). A tracer based assessment of hydrological pathways at different spatial scales in a mesoscale Scottish catchment. Hydrological Processes, 17, 759–777.

State Environmental Protection Administration. (2004). Methods for monitoring and analyzing water and wastewater (4th ed.). China Environmental Science Press: Beijing, China (In Chinese).

Tetzlaff, D., Seibert, J., Mcguire, K. J., et al. (2009a). How does landscape structure influence catchment transit time across different geomorphic provinces. Hydrological Processes, 23(January), 945–953.

Tetzlaff, D., Seibert, J., & Soulsby, C. (2009b). Inter-catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm Mountains, Scotland. Hydrological Processes, 23(May), 1874–1886.

Tobiason, J. E., Arianne, B., & Joseph, G. (2016). Manganese removal from drinking water sources. Current Pollution Reports, 2, 168–177. https://doi.org/10.1007/s40726-016-0036-2.

Wang, Z., Zhuang, J., Zhao, A. & Li, X. (2018). Types, harms and improvements of saline soil in Songnen Plain. International Symposium on Application of Materials Science and Energy Materials (SAMSE 2018) Shanghai, China.

Wasserman, G.A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P. et al. (2005). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspectives.

Weng, H. X., Qin, Y. C., & Chen, X. H. (2007). Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the hang-Jia-Hu plain, China. Hydrogeology Journal, 15, 715–726.

Xi-jun, G. (2015). Removal of iron, manganese and ammonia from groundwater of northeast small towns. Unpub. Doctoral dissertation, Jilin University, 54p (in Chinese).

Yadav, I. C., Devi, N. L., & Singh, S. (2015). Reductive dissolution of iron-oxyhydroxides directs groundwater arsenic mobilization in the upstream of Ganges river basin, Nepal. Journal of Geochemical Exploration, 148, 150–160.

Yamanaka, T., Mikita, M., Lorphensri, O., Shimada, J., Kagabu, M., Ikawa, R., Nakamura, T., & Tsujimura, M. (2011). Anthropogenic changes in a confined groundwater flow system in the Bangkok Basin, Thailand, part II: How much water has been renewed? Hydrological Processes, 25, 2734–2741.

Zachara, J. M., Fredrickson, J. K., Smith, S. C., & Gassman, P. L. (2001). Solubilization of Fe ( III ) oxide-bound trace metals by a dissimilatory Fe ( III ) reducing bacterium. Geochimica et Cosmochimica Acta, 65(1), 75–93.

Zhang, B., Song, X., Zhang, Y., Han, D., Tang, C., Yu, Y., & Ma, Y. (2012). Hydrochemical characteristics and water quality assessment of surface and groundwater in Songnen plain, Northeast China. Water Research, 46, 2737–2748.

Zhang, Z., Xiao, C., Adeyeye, O., Yang, W., & Liang, X. (2020). Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao city, Northeast China. Water, 12, 534.

Zoni, S. (2007). Neuropsychological testing for the assessment of manganese neurotoxicity: A review and a proposal. American J. of Ind. Machines, 830, 812–830.