Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model
Tóm tắt
Foetal onset hydrocephalus is a disease starting early in embryonic life; in many cases it results from a cell junction pathology of neural stem (NSC) and neural progenitor (NPC) cells forming the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brain. This pathology results in disassembling of VZ and loss of NSC/NPC, a phenomenon known as VZ disruption. At the cerebral aqueduct, VZ disruption triggers hydrocephalus while in the telencephalon, it results in abnormal neurogenesis. This may explain why derivative surgery does not cure hydrocephalus. NSC grafting appears as a therapeutic opportunity. The present investigation was designed to find out whether this is a likely possibility. HTx rats develop hereditary hydrocephalus; 30–40% of newborns are hydrocephalic (hyHTx) while their littermates are not (nHTx). NSC/NPC from the VZ/SVZ of nHTx rats were cultured into neurospheres that were then grafted into a lateral ventricle of 1-, 2- or 7-day-old hyHTx. Once in the cerebrospinal fluid, neurospheres disassembled and the freed NSC homed at the areas of VZ disruption. A population of homed cells generated new multiciliated ependyma at the sites where the ependyma was missing due to the inherited pathology. Another population of NSC homed at the disrupted VZ differentiated into βIII-tubulin+ spherical cells likely corresponding to neuroblasts that progressed into the parenchyma. The final fate of these cells could not be established due to the protocol used to label the grafted cells. The functional outcomes of NSC grafting in hydrocephalus remain open. The present study establishes an experimental paradigm of NSC/NPC therapy of foetal onset hydrocephalus, at the etiologic level that needs to be further explored with more analytical methodologies.
Tài liệu tham khảo
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH et al (2013) Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44:497–504
Ahn SY, Chang YS, Park WS (2014) Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage. Korean Journal of Pediatrics 57:251–256
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS (2015) Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS One 10(7):e0132919
Araya P, Vío K, Guerra M, Rodríguez S, Rodríguez EM (2013) An inflammatory response is associated to the progression of foetal onset hydrocephalus in the HTx rat. Procc. Int. Meeting of the Society for Research into Hydrocephalus and Spina Bifida, Cologne, Germany
Armstrong RJ, Svendsen CN (2000) Neural stem cells: from cell biology to cell replacement. Cell Transplant 9:139–152
Bai H, Suzuki Y, Noda T, Wu S, Kataoka K, Kitada K, Ohta M, Chou H, Ide C (2003) Dissemination and proliferation of neural stem cells on injection into the fourth ventricle of the rat: a trans- plantation. J Neurosci Methods 124:181–187
Baker BL (1977) Cellular composition of the human pituitary pars tuberalis as revealed by immunocytochemistry. Cell Tissue Res 182:151–163
Barker RA, Parmar M, Kirkeby A, Bjorklund A, Thompson L, Brundin P (2016) Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Park Dis 6:57–63
Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8:221–232
Bergsneider M, Egnor MR, Johnston M et al (2006) What we don't (but should) know about hydrocephalus. J Neurosurg 104:157–159
Beyer F, Samper Agrelo I, Küry P (2019) Do Neural stem cells have a choice? Heterogenic outcome of cell fate acquisition in different injury models. Int J Mol Sci 20(2)
Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, Pagano SF, Parati EA (2003) Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res 993(1–2):18–29
Bjorklund A, Kordower JH (2013) Cell therapy for Parkinson’s disease: what next? Mov Disord 28:110–115
Boop FA (2004) Posthemorrhagic hydrocephalus of prematurity. In: Cinalli C, Maixner WJ, Sainte-Rose C (eds) Pediatric hydrocephalus. Springer-Verlag, Milan, Italy
Castañeyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM, Strahle JM, Dahiya SM, Limbrick DD (2018) Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro. J Neuropathol Exp Neurol 77:803–813
Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270
Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, Lindvall O, Kokaia Z (2011) Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31:235–242
Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649
Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16:16–22
Domínguez-Pinos MD, Páez P, Jiménez AJ, Weil B, Arráez MA, Pérez-Fígares JM, Rodríguez EM (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604
Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. PNAS 99:17089–17094
Ferland RJ, Bátiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao YC, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodríguez EM, Sheen VL (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516
García-Bonilla M, Ojeda B, Shumilov K, Vitorica J, Guitérrez A et al (2019) Long-time effects of an experimental therapy with mesenchymal stem cells in congenital hydrocephalus. From SRHSB Abstracts, La Laguna, Tenerife, Spain
Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J 51:1–23
Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martin C (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol 284:475–484
Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, Ramírez M, García-Belda P, García-Verdugo JM (2013) Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec 296:1435–1452
Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, ABjorklund A, Parmar M (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665
Guerra M (2014) Neural stem cells, the hope of a better life for patients with foetal onset hydrocephalus. Fluids Barriers CNS 11:7
Guerra M, Henzi R, Ortloff A, Lichtin N, Vío K, Jimémez A, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WFA, Pérez-Figares JM, McAllister JP, Johanson CE, Rodríguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671
Henzi R, Guerra M, Vío K, González C, Herrera C, McAllister J, Johanson C, Rodriguez EM (2018) Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma. The cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation. Cell Tissue Res 373:421–438
Jellinger G (1986) Anatomopathology of non-tumoral aqueductal stenosis. J Neurosurg Sci 30:1Y16
Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 60:1105–1119
Johnson RT, Johnson KP, Edmonds CJ (1967) Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science 157:1066Y67
Jones HC, Klinge PM (2008) Hydrocephalus, 17-20th September, Hannover Germany: a conference report. Cerebrospinal Fluid Res 5:19
Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957
Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571
Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15(8):1078–1087
Koschnitzky JE, Keep RF, Limbrick DD Jr, McAllister JP 2nd, Morris JA, Strahle J, Yung YC (2018) Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 15(1):11
Li W, Englund E, Widner H, Mattsson B, van Westen D, Lätt J, Rehncrona S, Brundin P, Björklund A, Lindvall O, Li J (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. PNAS 113(23):6544–6549
Limbrick DD Jr, Baksh B, Morgan CD et al (2017) Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 12(2):e0172353
Lindvall O, Björklund A (2011) Cell therapeutics in Parkinson’s disease. Neurotherapeutics 8:539–548
Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096
Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders – time for clinical translation? J Clin Invest 120:29–40
Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med. https://doi.org/10.1038/nm1064
Ma X, Bao J, Adelstein RS (2007) Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell 18:2305–2312
Marshall WF, Kintner C (2008) Cilia orientation and the fluid mechanics of development. Curr Opin Cell Biol 20:48–52
McAllister JP 2nd, Williams MA, Walker ML, Kestle JR et al (2015) Hydrocephalus Symposium Expert Panel. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg 123:1427–1438
McAllister P, Guerra M, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodríguez EM, Limbrick DD (2017) Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 76:358–375
Morales DM, Townsend RR, Malone JP et al (2012) Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Molecular & Cellular proteomics 11(6):M111 011973
Morales DM, Holubkov R, Inder TE et al (2015) Cerebrospinal fluid levels of amyloid precursor protein are associated with ventricular size in post-hemorrhagic hydrocephalus of prematurity. PLoS One 10(3):e0115045
Morales DM, Silver SA, Morgan CD et al (2017) Lumbar cerebrospinal fluid biomarkers of post-hemorrhagic hydrocephalus of prematurity - amyloid precursor protein, soluble APPα, and L1 cell adhesion molecule. Neurosurgery 80(1):82–90
Neuhuber B, Barshinger AL, Paul C, Shumsky JS, Mitsui T, Fischer I (2008) Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine 9:390–399
Ohta M, Suzuki Y, Noda T, Kataoka K, Chou H, Ishikawa N, Kitada M, Matsumoto N, Dezawa M, Suzuki S, Ide C (2004) Implantation of neural stem cells via cerebrospinal fluid into the injured root. Neuroreport 15:1249–1253
Ortloff A, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, Rodríguez EM (2013) Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res 352:707–725
Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694
Politis M, Lindvall O (2012) Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 10:1
Rasin M, Gazula V, Breunig J, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827
Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM, Pérez-Fígares JM, Jiménez AJ (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546
Rodríguez EM, Guerra M (2017) Neural stem cells and fetal onset hydrocephalus. Pediatr Neurosurg 52:446–461
Rodríguez EM, Guerra M, Vío K, Gonzalez C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WFA, Jiménez A, Domínguez-Pinos MD, Pérez-Figares JM, McAllister JP, Johanson C (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–242
Rodríguez EM, Guerra M, Ortega E (2019) Physiopathology of foetal onset hydrocephalus. In Cerebrospinal fluid disorders. lifelong implications. David Limbrick and Jeffrey Leonard (eds.). Springer International Publishing. Berna. Suiza. ISBN: 978-3-319-97928-1
Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088
Rosser AE, Tyers P, Dunnett SB (2000) The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brain. Eur J Neurosci 12:2405–2413
Satake K, Lou J, Lenke LG (2004) Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 29:1971–1979
Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632
Schmidt NO, Koeder D, Messing M, Mueller FJ, Aboody KS, Kim SU, Black PM, Carroll RS, Westphal M, Lamszus K (2009) Vascular endo- thelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37
Shulyakov AV, Buist RJ, Del Bigio MR (2012) Intracranial biomechanics of acute experimental hydrocephalus in live rats. Neurosurgery 71:1032–1040
Sival DA, Guerra M, den Dunnen WF, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179
Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti horseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333
Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. PNAS 99:14506–14511
Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim SU, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74
Tatarishvili J, Oki K, Monni E, Koch P, Memanishvili T, Buga A, Verma V, Popa-Wagner A, Brustl O, Lindvall O, Kokaia Z (2014) Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor Neurol Neurosci 32:547–558
Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62(10):1019–1040
Wagshul ME, McAllister JP, Rashid S, Li J, Egnor MR, Walker ML, Yu M, Smith SD, Zhang G, Chen JJ, Benveniste H (2009) Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Exp Neurol 218:33–40
Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, Fleming L, Frim DM, Gwinn K, Kestle JR, Luciano MG, Madsen JR, Oster-Granite ML, Spinella G (2007) Priorities for hydrocephalus research: report from a National Institutes of Health-sponsored workshop. J Neurosurg 107:345–357
Wu S, Suzuki Y, Noda Y, Bai H, Kitada M, Kataoka K, Nishimura Y, Ide C (2002) Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat. J Neurosci Res 69:940–945
Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE (2009) Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 514:297–309
Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 3:99–87
Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6:3537–3548