A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures

G.S. Payette1, J.N. Reddy2
1ExxonMobil Upstream Research Company, Houston, TX 77252, USA
2Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Tài liệu tham khảo

Chapelle, 1998, Fundamental considerations for the finite element analysis of shell structures, Comput. Struct., 66, 19, 10.1016/S0045-7949(97)00078-3 Reddy, 1998, A generalization of two-dimensional theories of laminated composite plates, Commun. Appl. Numer. Methods, 3, 173, 10.1002/cnm.1630030303 Reddy, 2004 Robbins, 1993, Modelling of thick composites using a layerwise laminate theory, Internat. J. Numer. Methods Engrg., 36, 655, 10.1002/nme.1620360407 Robbins, 1996, Variable kinematic modeling of laminated composite plates, Internat. J. Numer. Methods Engrg., 39, 2283, 10.1002/(SICI)1097-0207(19960715)39:13<2283::AID-NME956>3.0.CO;2-M Ahmad, 1970, Analysis of thick and thin shell structures by curved finite elements, Internat. J. Numer. Methods Engrg., 2, 419, 10.1002/nme.1620020310 Simo, 1989, On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267, 10.1016/0045-7825(89)90002-9 Chinosi, 1998, Hierarchic finite elements for thin Naghdi shell model, Int. J. Solids Struct., 35, 1863, 10.1016/S0020-7683(97)83328-8 Cho, 2003, Development of geometrically exact new shell elements based on general curvilinear co-ordinates, Internat. J. Numer. Methods Engrg., 56, 81, 10.1002/nme.546 Chapelle, 2003, MITC elements for a classical shell model, Comput. Struct., 81, 523, 10.1016/S0045-7949(02)00408-X Arciniega, 2007, Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 196, 1048, 10.1016/j.cma.2006.08.014 Arciniega, 2007, Large deformation analysis of functionally graded shells, Int. J. Solids Struct., 44, 2036, 10.1016/j.ijsolstr.2006.08.035 Büechter, 1992, Shell theory versus degeneration—a comparison in large rotation finite element analysis, Internat. J. Numer. Methods Engrg., 34, 39, 10.1002/nme.1620340105 Chapelle, 2003 Başar, 1993, Refined shear-deformation models for composite laminates with finite rotations, Int. J. Solids Struct., 30, 2611, 10.1016/0020-7683(93)90102-D Betsch, 1998, On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells, Comput. Methods Appl. Mech. Engrg., 155, 273, 10.1016/S0045-7825(97)00158-8 Bischoff, 1997, Shear deformable shell elements for large strains and rotations, Internat. J. Numer. Methods Engrg., 40, 4427, 10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9 Sansour, 1995, A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 194, 10.1007/s004190050012 Bischoff, 2000, On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. Solids Struct., 37, 6933, 10.1016/S0020-7683(99)00321-2 Parisch, 1995, A continuum-based shell theory for non-linear applications, Internat. J. Numer. Methods Engrg., 38, 1855, 10.1002/nme.1620381105 Carrera, 2011, Effects of thickness stretching in functionally graded plates and shells, Composites B, 42, 123, 10.1016/j.compositesb.2010.10.005 Amabili, 2013, A new nonlinear higher-order shear deformation theory with thickness variation for large-amplitude vibrations of laminated doubly curved shells, J. Sound Vib., 332, 4620, 10.1016/j.jsv.2013.03.024 Amabili, 2010, A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells, Int. J. Non-Linear Mech., 45, 409, 10.1016/j.ijnonlinmec.2009.12.013 Dvorkin, 1984, A continuum mechanics based four-node shell element for general non-linear analysis, Eng. Comput., 1, 77, 10.1108/eb023562 Hinton, 1986, A family of quadrilateral Mindlin plate elements with substitute shear strain fields, Comput. Struct., 23, 409, 10.1016/0045-7949(86)90232-4 Simo, 1990, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 29, 1595, 10.1002/nme.1620290802 Pontaza, 2004, Mixed plate bending elements based on least-squares formulation, Internat. J. Numer. Methods Engrg., 60, 891, 10.1002/nme.991 Pontaza, 2005, Least-squares finite element formulation for shear-deformable shells, Comput. Methods Appl. Mech. Engrg., 194, 2464, 10.1016/j.cma.2004.07.041 Echter, 2013, A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170, 10.1016/j.cma.2012.10.018 Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013 Benson, 2010, Isogeometric shell analysis: the Reissner–Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011 Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 1367, 10.1016/j.cma.2010.12.003 Taylor, 1996 Karniadakis, 1999 Pontaza, 2003, Spectral/hp least-squares finite element formulation for the Navier–Stokes equations, J. Comput. Phys., 190, 523, 10.1016/S0021-9991(03)00296-1 Pontaza, 2004, Space–time coupled spectral/hp least-squares finite element formulation for the incompressible Navier–Stokes equations, J. Comput. Phys., 197, 418, 10.1016/j.jcp.2003.11.030 Pontaza, 2006, A least-squares finite element formulation for unsteady incompressible flows with improved velocity–pressure coupling, J. Comput. Phys., 217, 563, 10.1016/j.jcp.2006.01.013 Prabhakar, 2008, A collocation penalty least-squares finite element formulation for incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 449, 10.1016/j.cma.2007.06.013 Payette, 2011, On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problems, J. Comput. Phys., 230, 3589, 10.1016/j.jcp.2011.02.002 Payette, 2012, On the performance of high-order finite elements with respect to maximum principles and the nonnegative constraint for diffusion-type equations, Internat. J. Numer. Methods Engrg., 91, 742, 10.1002/nme.4291 Riks, 1979, An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 529, 10.1016/0020-7683(79)90081-7 Riks, 1984, Some computational aspects of the stability analysis of nonlinear structures, Comput. Methods Appl. Mech. Engrg., 47, 219, 10.1016/0045-7825(84)90078-1 Crisfield, 1981, A fast incremental/iterative solution procedure that handles “snap-through”, Comput. Struct., 13, 55, 10.1016/0045-7949(81)90108-5 Payette, 2012 Davis, 1997, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., 18, 140, 10.1137/S0895479894246905 Davis, 1999, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Software, 25, 1, 10.1145/305658.287640 Davis, 2004, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 165, 10.1145/992200.992205 Davis, 2004, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 196, 10.1145/992200.992206 Sze, 2004, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 1551, 10.1016/j.finel.2003.11.001 Parisch, 1981, Large displacements of shells including material nonlinearities, Comput. Methods Appl. Mech. Engrg., 27, 183, 10.1016/0045-7825(81)90149-3 Simo, 1990, On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 91, 10.1016/0045-7825(90)90143-A Saleeb, 1990, Hybrid/mixed model for non-linear shell analysis and its applications to large-rotation problems, Internat. J. Numer. Methods Engrg., 29, 407, 10.1002/nme.1620290213 To, 1995, Hybrid strain based three node flat triangular shell elements—II. Numerical investigation of nonlinear problems, Comput. Struct., 54, 1057, 10.1016/0045-7949(94)00396-K Sze, 2002, A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses, Comput. Methods Appl. Mech. Engrg., 191, 1945, 10.1016/S0045-7825(01)00362-0 Sze, 2002, An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells, Internat. J. Numer. Methods Engrg., 55, 853, 10.1002/nme.535 Arciniega, 2005 Massin, 2002, Nine node and seven node thick shell elements with large displacements and rotations, Comput. Struct., 80, 835, 10.1016/S0045-7949(02)00050-0 Timoshenko, 1936 Brank, 1995, On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Comput. Mech., 16, 341, 10.1007/BF00350723 Barut, 1997, Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element, Comput. Methods Appl. Mech. Engrg., 143, 155, 10.1016/S0045-7825(96)01140-1 Mohan, 1998, Updated Lagrangian formulation of a flat triangular element for thin laminated shells, AIAA J., 36, 273, 10.2514/2.7512 Sansour, 2000, Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements, Comput. Mech., 24, 435, 10.1007/s004660050003 Jiang, 1994, A simple four-noded corotational shell element for arbitrarily large rotations, Comput. Struct., 53, 1123, 10.1016/0045-7949(94)90159-7 Wagner, 1994, A simple finite rotation formulation for composite shell elements, Eng. Comput., 11, 145, 10.1108/02644409410799209 Balah, 2002, Finite element formulation of a third order laminated finite rotation shell element, Comput. Struct., 80, 1975, 10.1016/S0045-7949(02)00222-5