A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures
Tài liệu tham khảo
Chapelle, 1998, Fundamental considerations for the finite element analysis of shell structures, Comput. Struct., 66, 19, 10.1016/S0045-7949(97)00078-3
Reddy, 1998, A generalization of two-dimensional theories of laminated composite plates, Commun. Appl. Numer. Methods, 3, 173, 10.1002/cnm.1630030303
Reddy, 2004
Robbins, 1993, Modelling of thick composites using a layerwise laminate theory, Internat. J. Numer. Methods Engrg., 36, 655, 10.1002/nme.1620360407
Robbins, 1996, Variable kinematic modeling of laminated composite plates, Internat. J. Numer. Methods Engrg., 39, 2283, 10.1002/(SICI)1097-0207(19960715)39:13<2283::AID-NME956>3.0.CO;2-M
Ahmad, 1970, Analysis of thick and thin shell structures by curved finite elements, Internat. J. Numer. Methods Engrg., 2, 419, 10.1002/nme.1620020310
Simo, 1989, On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267, 10.1016/0045-7825(89)90002-9
Chinosi, 1998, Hierarchic finite elements for thin Naghdi shell model, Int. J. Solids Struct., 35, 1863, 10.1016/S0020-7683(97)83328-8
Cho, 2003, Development of geometrically exact new shell elements based on general curvilinear co-ordinates, Internat. J. Numer. Methods Engrg., 56, 81, 10.1002/nme.546
Chapelle, 2003, MITC elements for a classical shell model, Comput. Struct., 81, 523, 10.1016/S0045-7949(02)00408-X
Arciniega, 2007, Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 196, 1048, 10.1016/j.cma.2006.08.014
Arciniega, 2007, Large deformation analysis of functionally graded shells, Int. J. Solids Struct., 44, 2036, 10.1016/j.ijsolstr.2006.08.035
Büechter, 1992, Shell theory versus degeneration—a comparison in large rotation finite element analysis, Internat. J. Numer. Methods Engrg., 34, 39, 10.1002/nme.1620340105
Chapelle, 2003
Başar, 1993, Refined shear-deformation models for composite laminates with finite rotations, Int. J. Solids Struct., 30, 2611, 10.1016/0020-7683(93)90102-D
Betsch, 1998, On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells, Comput. Methods Appl. Mech. Engrg., 155, 273, 10.1016/S0045-7825(97)00158-8
Bischoff, 1997, Shear deformable shell elements for large strains and rotations, Internat. J. Numer. Methods Engrg., 40, 4427, 10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
Sansour, 1995, A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 194, 10.1007/s004190050012
Bischoff, 2000, On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. Solids Struct., 37, 6933, 10.1016/S0020-7683(99)00321-2
Parisch, 1995, A continuum-based shell theory for non-linear applications, Internat. J. Numer. Methods Engrg., 38, 1855, 10.1002/nme.1620381105
Carrera, 2011, Effects of thickness stretching in functionally graded plates and shells, Composites B, 42, 123, 10.1016/j.compositesb.2010.10.005
Amabili, 2013, A new nonlinear higher-order shear deformation theory with thickness variation for large-amplitude vibrations of laminated doubly curved shells, J. Sound Vib., 332, 4620, 10.1016/j.jsv.2013.03.024
Amabili, 2010, A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells, Int. J. Non-Linear Mech., 45, 409, 10.1016/j.ijnonlinmec.2009.12.013
Dvorkin, 1984, A continuum mechanics based four-node shell element for general non-linear analysis, Eng. Comput., 1, 77, 10.1108/eb023562
Hinton, 1986, A family of quadrilateral Mindlin plate elements with substitute shear strain fields, Comput. Struct., 23, 409, 10.1016/0045-7949(86)90232-4
Simo, 1990, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 29, 1595, 10.1002/nme.1620290802
Pontaza, 2004, Mixed plate bending elements based on least-squares formulation, Internat. J. Numer. Methods Engrg., 60, 891, 10.1002/nme.991
Pontaza, 2005, Least-squares finite element formulation for shear-deformable shells, Comput. Methods Appl. Mech. Engrg., 194, 2464, 10.1016/j.cma.2004.07.041
Echter, 2013, A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170, 10.1016/j.cma.2012.10.018
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013
Benson, 2010, Isogeometric shell analysis: the Reissner–Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011
Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 1367, 10.1016/j.cma.2010.12.003
Taylor, 1996
Karniadakis, 1999
Pontaza, 2003, Spectral/hp least-squares finite element formulation for the Navier–Stokes equations, J. Comput. Phys., 190, 523, 10.1016/S0021-9991(03)00296-1
Pontaza, 2004, Space–time coupled spectral/hp least-squares finite element formulation for the incompressible Navier–Stokes equations, J. Comput. Phys., 197, 418, 10.1016/j.jcp.2003.11.030
Pontaza, 2006, A least-squares finite element formulation for unsteady incompressible flows with improved velocity–pressure coupling, J. Comput. Phys., 217, 563, 10.1016/j.jcp.2006.01.013
Prabhakar, 2008, A collocation penalty least-squares finite element formulation for incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 449, 10.1016/j.cma.2007.06.013
Payette, 2011, On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problems, J. Comput. Phys., 230, 3589, 10.1016/j.jcp.2011.02.002
Payette, 2012, On the performance of high-order finite elements with respect to maximum principles and the nonnegative constraint for diffusion-type equations, Internat. J. Numer. Methods Engrg., 91, 742, 10.1002/nme.4291
Riks, 1979, An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 529, 10.1016/0020-7683(79)90081-7
Riks, 1984, Some computational aspects of the stability analysis of nonlinear structures, Comput. Methods Appl. Mech. Engrg., 47, 219, 10.1016/0045-7825(84)90078-1
Crisfield, 1981, A fast incremental/iterative solution procedure that handles “snap-through”, Comput. Struct., 13, 55, 10.1016/0045-7949(81)90108-5
Payette, 2012
Davis, 1997, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., 18, 140, 10.1137/S0895479894246905
Davis, 1999, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Software, 25, 1, 10.1145/305658.287640
Davis, 2004, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 165, 10.1145/992200.992205
Davis, 2004, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 196, 10.1145/992200.992206
Sze, 2004, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 1551, 10.1016/j.finel.2003.11.001
Parisch, 1981, Large displacements of shells including material nonlinearities, Comput. Methods Appl. Mech. Engrg., 27, 183, 10.1016/0045-7825(81)90149-3
Simo, 1990, On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 91, 10.1016/0045-7825(90)90143-A
Saleeb, 1990, Hybrid/mixed model for non-linear shell analysis and its applications to large-rotation problems, Internat. J. Numer. Methods Engrg., 29, 407, 10.1002/nme.1620290213
To, 1995, Hybrid strain based three node flat triangular shell elements—II. Numerical investigation of nonlinear problems, Comput. Struct., 54, 1057, 10.1016/0045-7949(94)00396-K
Sze, 2002, A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses, Comput. Methods Appl. Mech. Engrg., 191, 1945, 10.1016/S0045-7825(01)00362-0
Sze, 2002, An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells, Internat. J. Numer. Methods Engrg., 55, 853, 10.1002/nme.535
Arciniega, 2005
Massin, 2002, Nine node and seven node thick shell elements with large displacements and rotations, Comput. Struct., 80, 835, 10.1016/S0045-7949(02)00050-0
Timoshenko, 1936
Brank, 1995, On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Comput. Mech., 16, 341, 10.1007/BF00350723
Barut, 1997, Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element, Comput. Methods Appl. Mech. Engrg., 143, 155, 10.1016/S0045-7825(96)01140-1
Mohan, 1998, Updated Lagrangian formulation of a flat triangular element for thin laminated shells, AIAA J., 36, 273, 10.2514/2.7512
Sansour, 2000, Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements, Comput. Mech., 24, 435, 10.1007/s004660050003
Jiang, 1994, A simple four-noded corotational shell element for arbitrarily large rotations, Comput. Struct., 53, 1123, 10.1016/0045-7949(94)90159-7
Wagner, 1994, A simple finite rotation formulation for composite shell elements, Eng. Comput., 11, 145, 10.1108/02644409410799209
Balah, 2002, Finite element formulation of a third order laminated finite rotation shell element, Comput. Struct., 80, 1975, 10.1016/S0045-7949(02)00222-5