Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria

Biochemical Pharmacology - Tập 133 - Trang 117-138 - 2017
J.M. Ageitos1, A. Sánchez-Pérez2, P. Calo-Mata3, T.G. Villa1
1Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, Spain
2Faculty of Veterinary Science and Bosch Institute, University of Sydney, NSW 2006, Australia
3Department of Food Science and Technology, Faculty of Veterinary, University of Santiago de Compostela, Spain

Tài liệu tham khảo

Wang, 2015, APD3: the antimicrobial peptide database as a tool for research and education, Nucleic Acids Res., 44, D1087, 10.1093/nar/gkv1278 Waghu, 2015, CAMP R3: a database on sequences, structures and signatures of antimicrobial peptides, Nucleic Acids Res., 44, gkv1051 Zhao, 2013, LAMP: a database linking antimicrobial peptides, PLoS One, 8, e66557, 10.1371/journal.pone.0066557 Boman, 1995, Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol., 13, 61, 10.1146/annurev.iy.13.040195.000425 Epand, 1999, Diversity of antimicrobial peptides and their mechanisms of action, Biochim. Biophys. Acta, 1462, 11, 10.1016/S0005-2736(99)00198-4 Hancock, 2001, Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet Infect. Dis., 1, 156, 10.1016/S1473-3099(01)00092-5 Lai, 2007, The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci, Mol. Microbiol., 63, 497, 10.1111/j.1365-2958.2006.05540.x Cherkasov, 2009, Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs, ACS Chem. Biol., 4, 65, 10.1021/cb800240j Wade, 1990, All-D amino acid-containing channel-forming antibiotic peptides, Proc. Natl. Acad. Sci. U.S.A., 87, 4761, 10.1073/pnas.87.12.4761 Kamysz, 2003, Novel properties of antimicrobial peptides, Acta Biochim. Pol., 50, 461, 10.18388/abp.2003_3698 Dubos, 1939, Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro, J. Exp. Med., 70, 1, 10.1084/jem.70.1.1 Stauss-Grabo, 2014, Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp., Pharmazie, 69, 838 Izadpanah, 2005, Antimicrobial peptides, J. Am. Acad. Dermatol., 52, 381, 10.1016/j.jaad.2004.08.026 Knutson, 2005, Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin, Proc. Natl. Acad. Sci. U.S.A., 102, 1324, 10.1073/pnas.0409409102 Thomsen, 2010, The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin, BMC Microbiol., 10, 307, 10.1186/1471-2180-10-307 Hotchkiss, 1940, Fractionation of the bactericidal agent from cultures of a soil Bacillus, J. Biol. Chem., 132, 791, 10.1016/S0021-9258(19)56231-7 Townsley, 2001, Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles, Biochemistry, 40, 11676, 10.1021/bi010942w Kelkar, 2007, The gramicidin ion channel: a model membrane protein, Biochim. Biophys. Acta, 1768, 2011, 10.1016/j.bbamem.2007.05.011 Ruckdeschel, 1983, In vitro antibacterial activity of gramicidin and tyrothricin, Arzneimittelforschung, 33, 1620 Tamaki, 2009, Properties of synthetic analogs of gramicidin S containing l-serine or l-glutamic acid residue in place of l-ornithine residue, Int. J. Pept. Protein Res., 47, 369, 10.1111/j.1399-3011.1996.tb01086.x Kondejewski, 1996, Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs, J. Biol. Chem., 271, 25261, 10.1074/jbc.271.41.25261 Mogi, 2008, Gramicidin S identified as a potent inhibitor for cytochrome bd-type quinol oxidase, FEBS Lett., 582, 2299, 10.1016/j.febslet.2008.05.031 Tang, 1992, Characterisation of the tyrocidine and gramicidin fractions of the tyrothricin complex from Bacillus brevis using liquid chromatography and mass spectrometry, Int. J. Mass Spectrom. Ion Process., 122, 153, 10.1016/0168-1176(92)87015-7 Bahar, 2013, Antimicrobial peptides, Pharmaceuticals (Basel), 6, 1543, 10.3390/ph6121543 Dubos, 1941, The production of bactericidal substances by aerobic sporulating Bacilli, J. Exp. Med., 629–640 Tareq, 2014, Gageotetrins A−C, noncytotoxic antimicrobial linear lipopeptides from a marine bacterium Bacillus subtilis, Org. Lett., 16, 13, 10.1021/ol403657r Hilpert, 2010, Short cationic antimicrobial peptides interact with ATP, Antimicrob. Agents Chemother., 54, 4480, 10.1128/AAC.01664-09 Orwa, 2001, Isolation and structural characterization of polymyxin B components, J. Chromatogr. A, 912, 369, 10.1016/S0021-9673(01)00585-4 Koyama, 1950, A new antibiotic, colistin, produced by spore-forming soil bacteria, J. Antibiot. (Tokyo), 3, 457 Falagas, 2005, Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections, Clin. Infect. Dis., 40, 1333, 10.1086/429323 Roberts, 2015, Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last-line antibiotics against multidrug-resistant Gram-negative bacteria, ACS Infect. Dis., 1, 568, 10.1021/acsinfecdis.5b00085 Johnson, 1945, Bacitracin: a new antibiotic produced by a member of the B. subtilis group, Science, 102, 376, 10.1126/science.102.2650.376 Ming, 2002, Metal binding and structure–activity relationship of the metalloantibiotic peptide bacitracin, J. Inorg. Biochem., 91, 46, 10.1016/S0162-0134(02)00464-6 Ikai, 1995, Total structures and antimicrobial activity of bacitracin minor components, J. Antibiot. (Tokyo), 48, 233, 10.7164/antibiotics.48.233 Shiba, 1991, Structure of the lanthionine peptides nisin, ancovenin and lanthipeptin, 113 Bierbaum, 2009, Lantibiotics: mode of action, biosynthesis and bioengineering, Curr. Pharm. Biotechnol., 10, 2, 10.2174/138920109787048616 Rogers, 1928, The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus, J. Bacteriol., 16, 321, 10.1128/JB.16.5.321-325.1928 Hansen, 1994, Nisin as a model food preservative, Crit. Rev. Food Sci. Nutr., 34, 69, 10.1080/10408399409527650 Rodriguez, 1996, Review: antimicrobial spectrum, structure, properties and mode of action of nisin, a bacteriocin produced by Lactococcus lactis, Food Sci. Technol. Int., 2, 61, 10.1177/108201329600200202 Chatterjee, 2005, Biosynthesis and mode of action of lantibiotics, Chem. Rev., 105, 633, 10.1021/cr030105v Duquesne, 2007, Microcins, gene-encoded antibacterial peptides from enterobacteria, Nat. Prod. Rep., 24, 75005, 10.1039/b516237h Duquesne, 2007, Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria, J. Mol. Microbiol. Biotechnol., 13, 200, 10.1159/000104748 Salomón, 1992, Microcin 25, a novel antimicrobial peptide produced by Escherichia coli, J. Bacteriol., 174, 7428, 10.1128/jb.174.22.7428-7435.1992 Bellomio, 2007, Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production, J. Bacteriol., 189, 4180, 10.1128/JB.00206-07 Novikova, 2007, The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C, J. Bacteriol., 189, 8361, 10.1128/JB.01028-07 Metlitskaya, 2006, Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic microcin C, J. Biol. Chem., 281, 18033, 10.1074/jbc.M513174200 Roush, 2008, Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7, J. Am. Chem. Soc., 130, 3603, 10.1021/ja7101949 Vizán, 1991, The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase, EMBO J., 10, 467, 10.1002/j.1460-2075.1991.tb07969.x Herrero, 1986, Microcin B17 blocks DNA replication and induces the SOS system in Escherichia coli, J. Gen. Microbiol., 132, 393 Leitgeb, 2007, The history of alamethicin: a review of the most extensively studied peptaibol, Chem. Biodivers., 4, 1027, 10.1002/cbdv.200790095 Meyer, 1967, A polypeptide antibacterial agent isolated from Trichoderma viride, Experientia, 23, 85, 10.1007/BF02135929 De Zotti, 2009, Trichogin GA IV: an antibacterial and protease-resistant peptide, J. Pept. Sci., 15, 615, 10.1002/psc.1135 Rebuffat, 1991, Tricholongins BI and BII, 19 residue peptaibols from Trichoderma longibrachiatum solution structure from two-dimensional NMR spectroscopy, Eur. J. Biochem., 201, 661, 10.1111/j.1432-1033.1991.tb16327.x Rebuffat, 1993, Sequence and solution conformation of the 20-residue peptaibols, saturnisporins Sa-Ii and Sa-Iv, Int. J. Pept. Protein Res., 41, 74, 10.1111/j.1399-3011.1993.tb00117.x Bradley, 1979, The primary structure of sillucin and antimicrobial peptide from Mucor pusillus, FEBS Lett., 97, 81, 10.1016/0014-5793(79)80057-5 Zhu, 2012, Dermatophytic defensin with antiinfective potential, Proc. Natl. Acad. Sci. U.S.A., 109, 8495, 10.1073/pnas.1201263109 Schneider, 2010, Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II, Science, 80, 1168, 10.1126/science.1185723 Mygind, 2005, Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus, Nature, 437, 975, 10.1038/nature04051 Essig, 2014, Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis, J. Biol. Chem., 289, 34953, 10.1074/jbc.M114.599878 Fernandez de Caleya, 1972, Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro, Appl. Microbiol., 23, 998, 10.1128/AEM.23.5.998-1000.1972 Nawrot, 2014, Plant antimicrobial peptides, Folia Microbiol. (Praha), 59, 181, 10.1007/s12223-013-0280-4 López-Solanilla, 2003, Susceptibility of Listeria monocytogenes to antimicrobial peptides, FEMS Microbiol. Lett., 226, 101, 10.1016/S0378-1097(03)00579-2 Day, 2006, Characterization of wheat puroindoline proteins, FEBS J., 273, 5358, 10.1111/j.1742-4658.2006.05528.x Dhatwalia, 2009, Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein, World J. Agric. Sci., 5, 297 Vriens, 2014, Antifungal plant defensins: mechanisms of action and production, Molecules, 19, 12280, 10.3390/molecules190812280 Osborn, 1995, Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae, FEBS Lett., 368, 257, 10.1016/0014-5793(95)00666-W Segura, 1999, Snakin-1, a peptide from potato that is active against plant pathogens, Mol. Plant Microbe Interact., 12, 16, 10.1094/MPMI.1999.12.1.16 Craik, 1999, Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif, J. Mol. Biol., 294, 1327, 10.1006/jmbi.1999.3383 Craik, 2006, The cyclotide family of circular miniproteins: nature’s combinatorial peptide template, Biopolymers, 84, 250, 10.1002/bip.20451 Craik, 2012, Host-defense activities of cyclotides, Toxins (Basel), 4, 139, 10.3390/toxins4020139 Nawae, 2014, Defining the membrane disruption mechanism of kalata B1 via coarse-grained molecular dynamics simulations, Sci. Rep., 4, 3933, 10.1038/srep03933 Tam, 1999, An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides, Proc. Natl. Acad. Sci. U.S.A., 96, 8913, 10.1073/pnas.96.16.8913 Witherup, 1994, Cyclopsychotride-a, a biologically-active, 31-residue cyclic peptide isolated from Psychotria longipes, J. Nat. Prod., 57, 1619, 10.1021/np50114a002 Berlinck, 2007, Guanidine alkaloids from marine invertebrates, 305 Matsunaga, 1984, Bioactive marine metabolites VI. Structure elucidation of discodermin a, an antimicrobial peptide from the marine sponge Discodermia kiiensis, Tetrahedron Lett., 25, 5165, 10.1016/S0040-4039(01)81553-7 Fusetani, 2010, Antifungal peptides in marine invertebrates, Invert. Surviv. J., 7, 53 Matsunaga, 1985, Amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis, J. Nat. Prod., 48, 236, 10.1021/np50038a006 Gulavita, 1992, Polydiscamide A: a new bioactive depsipeptide from the marine sponge Discodermia sp., J. Org. Chem., 57, 1767, 10.1021/jo00032a031 Ovchinnikova, 2006, Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins, Biochem. Biophys. Res. Commun., 348, 514, 10.1016/j.bbrc.2006.07.078 Shenkarev, 2012, Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita, Biochem. Biophys. Res. Commun., 429, 63, 10.1016/j.bbrc.2012.10.092 Vidal-Dupiol, 2011, Innate immune responses of a scleractinian coral to vibriosis, J. Biol. Chem., 286, 22688, 10.1074/jbc.M110.216358 Charlet, 1996, Innate Immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis, J. Biol. Chem., 271, 21808, 10.1074/jbc.271.36.21808 Mitta, 2000, Original involvement of antimicrobial peptides in mussel innate immunity, FEBS Lett., 486, 185, 10.1016/S0014-5793(00)02192-X Miyata, 1989, Antimicrobial peptides, isolated from horseshoe crab hemocytes tachyplesin II, and polyphemusins I and II: chemical structures and biological activity, J. Biochem., 106, 663, 10.1093/oxfordjournals.jbchem.a122913 Jain, 2014, Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells, FEBS J., 282, 732, 10.1111/febs.13178 Bulet, 2004, Anti-microbial peptides: from invertebrates to vertebrates, Immunol. Rev., 198, 169, 10.1111/j.0105-2896.2004.0124.x Yonezawa, 1992, Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action, Biochemistry, 31, 2998, 10.1021/bi00126a022 Yonezawa, 1993, Tachyplesin I-induced inhibition of sequence-specific protein binding to DNA, Bull. Inst. Chem. Res. Kyoto Univ., 71, 245 Steiner, 1981, Sequence and specificity of two antibacterial proteins involved in insect immunity, Nature, 292, 246, 10.1038/292246a0 Moore, 1996, Antimicrobial activity of cecropins, J. Antimicrob. Chemother., 37, 1077, 10.1093/jac/37.6.1077 Flyg, 1987, Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity, Insect Biochem., 17, 153, 10.1016/0020-1790(87)90155-7 De Lucca, 1999, Antifungal peptides: novel therapeutic compounds against emerging pathogens, Antimicrob. Agents Chemother., 43, 1, 10.1128/AAC.43.1.1 Fehlbaum, 1996, Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides, Proc. Natl. Acad. Sci. U.S.A., 93, 1221, 10.1073/pnas.93.3.1221 Fennell, 1968, Antibacterial action of melittin, a polypeptide from bee venom, Exp. Biol. Med., 127, 707, 10.3181/00379727-127-32779 Park, 1808, A plausible mode of action of pseudin-2, an antimicrobial peptide from Pseudis paradoxa, Biochim. Biophys. Acta, 2011, 171 Casteels, 1989, Apidaecins: antibacterial peptides from honeybees, EMBO J., 8, 2387, 10.1002/j.1460-2075.1989.tb08368.x Casteels, 1994, Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity, Biochem. Biophys. Res. Commun., 199, 339, 10.1006/bbrc.1994.1234 Otvos, 2000, Interaction between heat shock proteins and antimicrobial peptides, Biochemistry, 39, 14150, 10.1021/bi0012843 Casteels, 1990, Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera), Eur. J. Biochem., 187, 381, 10.1111/j.1432-1033.1990.tb15315.x Casteels, 1993, Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera), J. Biol. Chem., 268, 7044, 10.1016/S0021-9258(18)53143-4 Rahnamaeian, 2015, Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria, Proc. Biol. Sci., 282, 10.1098/rspb.2015.0293 Cociancich, 1994, Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus, Biochem. J., 300, 567, 10.1042/bj3000567 Bulet, 1993, A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution, J. Biol. Chem., 268, 14893, 10.1016/S0021-9258(18)82417-6 Marcos, 2009, Antimicrobial peptides: to membranes and beyond, Expert Opin. Drug Discov., 10.1517/17460440902992888 Kragol, 2001, The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding, Biochemistry, 40, 3016, 10.1021/bi002656a Lele, 2015, Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a proline rich antimicrobial peptide, Eur. J. Med. Chem., 92, 637, 10.1016/j.ejmech.2015.01.032 Talat, 2011, Glycosylated analogs of formaecin I and drosocin exhibit differential pattern of antibacterial activity, Glycoconj. J., 28, 537, 10.1007/s10719-011-9353-2 Bikker, 2006, Evaluation of the antibacterial spectrum of drosocin analogues, Chem. Biol. Drug Des., 68, 148, 10.1111/j.1747-0285.2006.00424.x Marchini, 1993, Purification and primary structure of ceratotoxin A and B, two antibacterial peptides from the female reproductive accessory glands of the medfly Ceratitis capitata (insecta: Diptera), Insect Biochem. Mol. Biol., 23, 591, 10.1016/0965-1748(93)90032-N Rosetto, 1996, Molecular characterization of ceratotoxin C, a novel antibacterial female-specific peptide of the ceratotoxin family from the medfly Ceratitis capitata, Eur. J. Biochem., 241, 330, 10.1111/j.1432-1033.1996.00330.x Manetti, 1995, CDNA sequence and expression of the ceratotoxin gene encoding an antibacterial sex-specific peptide from the medfly Ceratitis capitata (diptera), J. Biol. Chem., 270, 6199, 10.1074/jbc.270.11.6199 Marri, 1996, The novel antibacterial peptide ceratotoxin A alters permeability of the inner and outer membrane of Escherichia coli K-12, Curr. Microbiol., 33, 40, 10.1007/s002849900071 Masso-Silva, 2014, Antimicrobial peptides from fish, Pharmaceuticals, 7, 265, 10.3390/ph7030265 van Hoek, 2014, Antimicrobial peptides in reptiles, Pharmaceuticals, 7, 723, 10.3390/ph7060723 Zhang, 2014, Avian antimicrobial host defense peptides: from biology to therapeutic applications, Pharmaceuticals, 7, 220, 10.3390/ph7030220 Kościuczuk, 2012, Cathelicidins: family of antimicrobial peptides. A review, Mol. Biol. Rep., 1 Tomasinsig, 2005, The cathelicidins-structure, function and evolution, Curr. Protein Pept. Sci., 6, 23, 10.2174/1389203053027520 Shinnar, 1996, New family of linear antimicrobial peptides from hagfish intestine contains bromo-tryptophan as novel amino acid, 189 Uzzell, 2003, Hagfish intestinal antimicrobial peptides are ancient cathelicidins, Peptides, 24, 1655, 10.1016/j.peptides.2003.08.024 Broekman, 2011, Functional characterization of codCath, the mature cathelicidin antimicrobial peptide from Atlantic cod (Gadus morhua), Peptides, 32, 2044, 10.1016/j.peptides.2011.09.012 Broekman, 2011, Cod cathelicidin: isolation of the mature peptide, cleavage site characterisation and developmental expression, Dev. Comp. Immunol., 35, 296, 10.1016/j.dci.2010.10.002 Chang, 2006, Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), Society, 50, 185 Chang, 2005, Identification of a novel cathelicidin gene in the rainbow trout, Oncorhynchus mykiss, Infect. Immun., 73, 5053, 10.1128/IAI.73.8.5053-5064.2005 Maier, 2008, Characterisation of cathelicidin gene family members in divergent fish species, Mol. Immunol., 45, 3723, 10.1016/j.molimm.2008.06.002 Ruangsri, 2013, A novel beta-defensin antimicrobial peptide in atlantic cod with stimulatory effect on phagocytic activity, PLoS One, 8, 10.1371/journal.pone.0062302 Cai, 2012, Recombinant medaka (Oryzias melastigmus) pro-hepcidin: multifunctional characterization, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 161, 140, 10.1016/j.cbpb.2011.10.006 Cole, 1997, Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder, J. Biol. Chem., 272, 12008, 10.1074/jbc.272.18.12008 Patrzykat, 2002, Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli, Antimicrob. Agents Chemother., 46, 605, 10.1128/AAC.46.3.605-614.2002 Silphaduang, 2001, Peptide antibiotics in mast cells of fish, Nature, 414, 268, 10.1038/35104690 Simmaco, 1998, Antimicrobial peptides from amphibian skin: What do they tell us?, Biopolym. Pept. Sci. Sect., 47, 435, 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8 Mor, 1991, Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin, Biochemistry, 30, 8824, 10.1021/bi00100a014 Xiao, 2011, Antimicrobial peptides from amphibians, Biomol. Concepts, 2, 27, 10.1515/bmc.2011.006 Simmaco, 2009, Bombinins, antimicrobial peptides from Bombina species, Biochim. Biophys. Acta, 1788, 1551, 10.1016/j.bbamem.2009.01.004 Kiss, 1962, Uber das Giftsekret der Gelbbauchunke, Bombina variegata L., Toxicon, 1, 33, 10.1016/0041-0101(62)90006-5 Csordás, 1970, Isolation and structure elucidation of an hemolytic polypeptide from the defensive secretion European Bombina species (in German), Monatsh. Chem., 101, 182, 10.1007/BF00907538 Simmaco, 1991, A family of bombinin-related peptides from the skin of Bombina variegata, Eur. J. Biochem., 199, 217, 10.1111/j.1432-1033.1991.tb16112.x Gibson, 1991, Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis, J. Biol. Chem., 266, 23103, 10.1016/S0021-9258(18)54469-0 Mignogna, 1993, Antibacterial and haemolytic peptides containing d-alloisoleucine from the skin of Bombina variegata, EMBO J., 12, 4829, 10.1002/j.1460-2075.1993.tb06172.x Mangoni, 2008, Comparative analysis of the bactericidal activities of amphibian peptide analogues against multidrug-resistant nosocomial bacterial strains, Antimicrob. Agents Chemother., 52, 85, 10.1128/AAC.00796-07 Lai, 2002, An anionic antimicrobial peptide from toad Bombina maxima, Biochem. Biophys. Res. Commun., 295, 796, 10.1016/S0006-291X(02)00762-3 Lai, 2002, Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima, Peptides, 23, 427, 10.1016/S0196-9781(01)00641-6 Lee, 2005, Variety of antimicrobial peptides in the Bombina maxima toad and evidence of their rapid diversification, Eur. J. Immunol., 35, 1220, 10.1002/eji.200425615 Wang, 2005, Maximins S, a novel group of antimicrobial peptides from toad Bombina maxima, Biochem. Biophys. Res. Commun., 327, 945, 10.1016/j.bbrc.2004.12.094 Liu, 2011, There are abundant antimicrobial peptides in brains of two kinds of Bombina toads, J. Proteome Res., 10, 1806, 10.1021/pr101285n Park, 1996, A novel antimicrobial peptide from Bufo bufo gargarizans, Biochem. Biophys. Res Commun., 218, 408, 10.1006/bbrc.1996.0071 Hale, 2007, Alternative mechanisms of action of cationic antimicrobial peptides on bacteria, Expert Rev. Anti Infect. Ther., 5, 951, 10.1586/14787210.5.6.951 Hao, 2012, Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate, Amino Acids, 43, 677, 10.1007/s00726-011-1116-7 Wei, 2013, Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide, J. Med. Chem., 56, 3546, 10.1021/jm4004158 Yu, 2013, Identification and polymorphism discovery of the cathelicidins, Lf-CATHs in ranid amphibian (Limnonectes fragilis), FEBS J., 280, 6022, 10.1111/febs.12521 Ling, 2014, Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design, PLoS One, 9, 10.1371/journal.pone.0093216 Simmaco, 1994, Antimicrobial peptides from skin secretions of Rana esculenta, J. Biol. Chem., 269, 11956, 10.1016/S0021-9258(17)32666-2 Mor, 1994, Isolation and structure of novel defensive peptides from frog skin, Eur. J. Biochem., 219, 145, 10.1111/j.1432-1033.1994.tb19924.x Mor, 1994, The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms, J. Biol. Chem., 269, 31635, 10.1016/S0021-9258(18)31742-3 Amiche, 2008, A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae, Peptides, 29, 2074, 10.1016/j.peptides.2008.06.017 Nicolas, 2009, The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides, Biochim. Biophys. Acta, 1788, 1537, 10.1016/j.bbamem.2008.09.006 Vanhoye, 2004, Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions, Biochemistry, 43, 8391, 10.1021/bi0493158 Amiche, 2000, Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family, Eur. J. Biochem., 267, 4583, 10.1046/j.1432-1327.2000.01514.x El Amri, 2006, The plasticins: membrane adsorption, lipid disorders, and biological activity, Biochemistry, 45, 14285, 10.1021/bi060999o Wu, 1999, Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli, Biochemistry, 38, 7235, 10.1021/bi9826299 Pierre, 2000, Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors, Eur. J. Biochem., 267, 370, 10.1046/j.1432-1327.2000.01012.x Leite, 2005, Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus, Peptides, 26, 565, 10.1016/j.peptides.2004.11.002 Raja, 2013, Structure, antimicrobial activities and mode of interaction with membranes of novel Phylloseptins from the painted-belly leaf frog, Phyllomedusa sauvagii, PLoS One, 8, 10.1371/annotation/dbb3e614-dc4c-40dd-b9e0-37787ae6b150 Rollins-Smith, 2005, An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura: Leptodactylidae), Regul. Pept., 124, 173, 10.1016/j.regpep.2004.07.013 Basir, 2000, Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris, Biochim. Biophys. Acta, 1543, 95, 10.1016/S0167-4838(00)00191-6 Zasloff, 1987, Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. U.S.A., 84, 5449, 10.1073/pnas.84.15.5449 Matsuzaki, 1999, Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes, Biochim. Biophys. Acta, 1462, 1, 10.1016/S0005-2736(99)00197-2 Mechkarska, 2011, Peptidomic analysis of skin secretions demonstrates that the allopatric populations of Xenopus muelleri (Pipidae) are not conspecific, Peptides, 32, 1502, 10.1016/j.peptides.2011.05.025 Conlon, 2010, Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae), Peptides, 31, 989, 10.1016/j.peptides.2010.03.002 Conlon, 2014, Host-defense peptides from skin secretions of Fraser’s clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae, Comp. Biochem. Physiol. D Genomics Proteomics, 12, 45, 10.1016/j.cbd.2014.10.001 Roelants, 2013, Origin and functional diversification of an amphibian defense peptide arsenal, PLoS Genet., 9, e1003662, 10.1371/journal.pgen.1003662 Soravia, 1988, Antimicrobial properties of peptides from Xenopus granular gland secretions, FEBS Lett., 228, 337, 10.1016/0014-5793(88)80027-9 Olson, 2001, Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog, Biochem. Biophys. Res. Commun., 288, 1001, 10.1006/bbrc.2001.5884 Goraya, 1998, Ranatuerins: antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana, Biochem. Biophys. Res. Commun., 250, 589, 10.1006/bbrc.1998.9362 Sonnevend, 2004, Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog, Peptides, 25, 29, 10.1016/j.peptides.2003.11.011 Clark, 1994, Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin, J. Biol. Chem., 269, 10849, 10.1016/S0021-9258(17)34136-4 Giacometti, 1998, In vitro activities of membrane-active peptides against Gram-positive and Gram-negative aerobic bacteria in vitro activities of membrane-active peptides against Gram-positive and Gram-negative aerobic bacteria, Antimicrob. Agents Chemother., 42, 3320, 10.1128/AAC.42.12.3320 Cheng, 2015, Evolution of the avian β-defensin and cathelicidin genes, BMC Evol. Biol., 15, 188, 10.1186/s12862-015-0465-3 Semple, 2003, Duplication and selection in the evolution of primate beta-defensin genes, Genome Biol., 4, R31, 10.1186/gb-2003-4-5-r31 Zhao, 2008, Identification and characterization of novel reptile cathelicidins from elapid snakes, Peptides, 29, 1685, 10.1016/j.peptides.2008.06.008 Wang, 2008, Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics, PLoS One, 3, 10.1371/journal.pone.0003217 Nair, 2007, Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins, Biochem. J., 402, 93, 10.1042/BJ20060318 Xiao, 2006, Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity, J. Biol. Chem., 281, 2858, 10.1074/jbc.M507180200 Goitsuka, 2007, Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway, Proc. Natl. Acad. Sci. U.S.A., 104, 15063, 10.1073/pnas.0707037104 Gao, 2015, Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism, Sci. Rep., 5, 17260, 10.1038/srep17260 Stegemann, 2009, Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles, Proteomics, 9, 1364, 10.1002/pmic.200800569 Yount, 2009, Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine, Proc. Natl. Acad. Sci. U.S.A., 106, 14972, 10.1073/pnas.0904465106 Lakshminarayanan, 2008, Structure, self-assembly, and dual role of a β-defensin-like peptide from the Chinese soft-shelled turtle eggshell matrix, J. Am. Chem. Soc., 130, 4660, 10.1021/ja075659k Chattopadhyay, 2006, Small cationic protein from a marine turtle has β-defensin-like fold and antibacterial and antiviral activity, Proteins Struct. Funct. Bioinf., 64, 524, 10.1002/prot.20963 Sugiarto, 2004, Avian antimicrobial peptides: the defense role of B-defensins, Biochem. Biophys. Res. Commun., 323, 721, 10.1016/j.bbrc.2004.08.162 Evans, 1994, Isolation of antimicrobial peptides from avian heterophils, J. Leukoc. Biol., 56, 661, 10.1002/jlb.56.5.661 Evans, 1995, Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3, Vet. Microbiol., 47, 295, 10.1016/0378-1135(95)00126-3 Harwig, 1994, Gallinacins: cystine-rich antimicrobial peptides of chicken leukocytes, FEBS Lett., 342, 281, 10.1016/0014-5793(94)80517-2 Derache, 2009, Primary structure and antibacterial activity of chicken bone marrow-derived β-defensins, Antimicrob. Agents Chemother., 53, 4647, 10.1128/AAC.00301-09 Zhao, 2001, Gallinacin-3, an inducible epithelial β-defensin in the chicken, Infect. Immun., 69, 2684, 10.1128/IAI.69.4.2684-2691.2001 Thouzeau, 2003, Spheniscins, avian β-defensins in preserved stomach contents of the King Penguin, Aptenodytes patagonicus, J. Biol. Chem., 278, 51053, 10.1074/jbc.M306839200 Sugiarto, 2006, Identification of three novel ostricacins: an update on the phylogenetic perspective of β-defensins, Int. J. Antimicrob. Agents, 27, 229, 10.1016/j.ijantimicag.2005.10.013 van Dijk, 2008, Avian defensins, Vet. Immunol. Immunopathol., 124, 1, 10.1016/j.vetimm.2007.12.006 Lynn, 2007, Avian beta-defensin nomenclature: a community proposed update, Immunol. Lett., 110, 86, 10.1016/j.imlet.2007.03.007 Yang, 2002, Mammalian defensins in immunity: more than just microbicidal, Trends Immunol., 23, 291, 10.1016/S1471-4906(02)02246-9 Dürr, 2006, LL-37, the only human member of the cathelicidin family of antimicrobial peptides, Biochim. Biophys. Acta, 1758, 1408, 10.1016/j.bbamem.2006.03.030 De Smet, 2005, Human antimicrobial peptides: defensins, cathelicidins and histatins, Biotechnol. Lett., 27, 1337, 10.1007/s10529-005-0936-5 Turner, 1998, Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils, Antimicrob. Agents Chemother., 42, 2206, 10.1128/AAC.42.9.2206 Duplantier, 2013, The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds, Front. Immunol., 4, 1, 10.3389/fimmu.2013.00143 Overhage, 2008, Human host defense peptide LL-37 prevents bacterial biofilm formation, Infect. Immun., 76, 4176, 10.1128/IAI.00318-08 Falla, 1996, Mode of action of the antimicrobial peptide indolicidin, J. Biol. Chem., 271, 19298, 10.1074/jbc.271.32.19298 Brahma, 2015, Diversity, antimicrobial action and structure-activity relationship of buffalo cathelicidins, PLoS One, 10, e0144741, 10.1371/journal.pone.0144741 Hsu, 2005, Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA, Nucleic Acids Res., 33, 4053, 10.1093/nar/gki725 Marchand, 2006, Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites, Nucleic Acids Res., 34, 5157, 10.1093/nar/gkl667 Subbalakshmi, 1998, Mechanism of antimicrobial action of indolicidin, FEMS Microbiol. Lett., 160, 91, 10.1111/j.1574-6968.1998.tb12896.x Kokryakov, 1993, Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins, FEBS Lett., 327, 231, 10.1016/0014-5793(93)80175-T Steinberg, 1997, Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity, Antimicrob. Agents Chemother., 41, 1738, 10.1128/AAC.41.8.1738 Yan, 2001, Synergistic interactions between mammalian antimicrobial defense peptides, Antimicrob. Agents Chemother., 45, 1558, 10.1128/AAC.45.5.1558-1560.2001 Brogden, 2003, Antimicrobial peptides in animals and their role in host defences, Int. J. Antimicrob. Agents, 22, 465, 10.1016/S0924-8579(03)00180-8 Romeo, 1988, Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils, J. Biol. Chem., 263, 9573, 10.1016/S0021-9258(19)81553-3 Wu, 1999, Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane, J. Biol. Chem., 274, 29, 10.1074/jbc.274.1.29 Madhongsa, 2013, Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization, PLoS Negl. Trop. Dis., 7, 1, 10.1371/journal.pntd.0002267 Skerlavaj, 1990, Rapid membrane permeabilization and inhibition of vital functions of Gram-negative bacteria by bactenecins, Infect. Immun., 58, 3724, 10.1128/IAI.58.11.3724-3730.1990 Scocchi, 1999, Novel cathelicidins in horse leukocytes, FEBS Lett., 457, 459, 10.1016/S0014-5793(99)01097-2 Skerlavaj, 2001, Structural and functional analysis of horse cathelicidin peptides, Antimicrob. Agents Chemother., 45, 715, 10.1128/AAC.45.3.715-722.2001 Schlusselhuber, 2013, The equine antimicrobial peptide eCATH1 is effective against the facultative intracellular pathogen Rhodococcus equi in mice, Antimicrob. Agents Chemother., 57, 4615, 10.1128/AAC.02044-12 Niyonsaba, 2005, Protective roles of the skin against infection: Implication of naturally occurring human antimicrobial agents β-defensins, cathelicidin LL-37 and lysozyme, J. Dermatol. Sci., 40, 157, 10.1016/j.jdermsci.2005.07.009 Guilhelmelli, 2013, Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance, Front. Microbiol., 4, 353, 10.3389/fmicb.2013.00353 Selsted, 2005, Mammalian defensins in the antimicrobial immune response, Nat. Immunol., 6, 551, 10.1038/ni1206 Lehrer, 2012, Α-defensins in human innate immunity, Immunol. Rev., 245, 84, 10.1111/j.1600-065X.2011.01082.x Ayabe, 2000, Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria, Nat. Immunol., 1, 113, 10.1038/77783 Zeya, 1966, Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities, J. Bacteriol., 91, 750, 10.1128/JB.91.2.750-754.1966 Yamashita, 1989, Purification, primary structure, and biological activity of guinea pig neutrophil cationic peptides, Infect. Immun., 57, 2405, 10.1128/IAI.57.8.2405-2409.1989 Selsted, 1985, Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils, J. Biol. Chem., 260, 4579, 10.1016/S0021-9258(18)89110-4 Eisenhauer, 1989, Purification and antimicrobial properties of three defensins from rat neutrophils, Infect. Immun., 57, 2021, 10.1128/IAI.57.7.2021-2027.1989 Mak, 1996, Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins, Infect. Immun., 64, 4444, 10.1128/IAI.64.11.4444-4449.1996 Schneider, 2005, Human defensins, J. Mol. Med., 83, 587, 10.1007/s00109-005-0657-1 Varkey, 2005, Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines, Antimicrob. Agents Chemother., 49, 4561, 10.1128/AAC.49.11.4561-4566.2005 Lehrer, 1993, Defensins: antimicrobial and cytotoxic peptides of mammalian cells, Annu. Rev. Immunol., 11, 105, 10.1146/annurev.iy.11.040193.000541 Zhang, 2010, The membrane-bound structure and topology of a human Alpha-defensin indicate a dimer pore mechanism for membrane disruption, Biochemistry, 49, 9770, 10.1021/bi101512j Ouellette, 2011, Paneth cell α-defensins in enteric innate immunity, Cell. Mol. Life Sci., 68, 2215, 10.1007/s00018-011-0714-6 Ouellette, 1994, Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms, Infect. Immun., 62, 5040, 10.1128/IAI.62.11.5040-5047.1994 Condon, 1999, Induction of a rat enteric defensin gene by hemorrhagic shock, Infect. Immun., 67, 4787, 10.1128/IAI.67.9.4787-4793.1999 Bruhn, 2009, Antimicrobial properties of the equine alpha-defensin DEFA1 against bacterial horse pathogens, Vet. Immunol. Immunopathol., 130, 102, 10.1016/j.vetimm.2009.01.005 Tanabe, 2004, Paneth cell alpha-defensins from rhesus macaque small intestine, Infect. Immun., 72, 1470, 10.1128/IAI.72.3.1470-1478.2004 Patil, 2005, Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract, Physiol. Genomics, 23, 5, 10.1152/physiolgenomics.00104.2005 Diamond, 1991, Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA, Proc. Natl. Acad. Sci. U.S.A., 88, 3952, 10.1073/pnas.88.9.3952 Taha-Abdelaziz, 2013, Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle, Vet. Immunol. Immunopathol., 152, 289, 10.1016/j.vetimm.2012.12.016 Schonwetter, 1995, Epithelial antibiotics induced at sites of inflammation, Science, 267, 1645, 10.1126/science.7886453 Roosen, 2004, Bovine beta-defensins: identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue, Mamm. Genome, 15, 834, 10.1007/s00335-004-2387-z Isobe, 2009, Existence of functional lingual antimicrobial peptide in bovine milk, J. Dairy Sci., 92, 2691, 10.3168/jds.2008-1940 Rieg, 2010, Differential activity of innate defense antimicrobial peptides against Nocardia species, BMC Microbiol., 10, 61, 10.1186/1471-2180-10-61 Selsted, 1996, Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils, J. Biol. Chem., 271, 16430, 10.1074/jbc.271.27.16430 Stenbeck, 1998, Production of β-defensins by human airway epithelia, Proc. Natl. Acad. Sci. U.S.A., 95, 14961, 10.1073/pnas.95.25.14961 Pazgier, 2006, Human β-defensins, Cell. Mol. Life Sci., 63, 1294, 10.1007/s00018-005-5540-2 Zhao, 1996, Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells, FEBS Lett., 396, 319, 10.1016/0014-5793(96)01123-4 Harder, 2001, Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic, J. Biol. Chem., 276, 5707, 10.1074/jbc.M008557200 Schroeder, 2011, Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1, Nature, 469, 419, 10.1038/nature09674 Nuding, 2009, Antibacterial activity of human defensins on anaerobic intestinal bacterial species: a major role of HBD-3, Microbes Infect., 11, 384, 10.1016/j.micinf.2009.01.001 Harder, 1997, A peptide antibiotic from human skin, Nature, 387, 10.1038/43088 Kaiser, 2000, Expression of mammalian defensin genes, J. Leukoc. Biol., 68, 779, 10.1189/jlb.68.6.779 Bals, 1998, Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung, J. Clin. Invest., 102, 874, 10.1172/JCI2410 Joly, 2004, Human β-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms, J. Clin. Microbiol., 42, 1024, 10.1128/JCM.42.3.1024-1029.2004 Sass, 2010, Human β-defensin 3 inhibits cell wall biosynthesis in staphylococci, Infect. Immun., 78, 2793, 10.1128/IAI.00688-09 Boniotto, 2003, A study of host defence peptide beta-defensin 3 in primates, Biochem. J., 374, 707, 10.1042/bj20030528 Abou Alaiwa, 2014, PH modulates the activity and synergism of the airway surface liquid antimicrobials beta-defensin-3 and LL-37, Proc. Natl. Acad. Sci. U.S.A., 111, 18703, 10.1073/pnas.1422091112 Nuding, 2014, Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile, Antimicrob. Agents Chemother., 58, 5719, 10.1128/AAC.02542-14 García, 2001, Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity, FASEB J., 15, 1819, 10.1096/fj.00-0865fje Sharma, 2015, Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity, PLoS One, 10, 14 Schutte, 2002, Discovery of five conserved -defensin gene clusters using a computational search strategy, Proc. Natl. Acad. Sci. U.S.A., 99, 10.1073/pnas.042692699 Hazlett, 2011, Defensins in innate immunity, Cell Tissue Res., 343, 175, 10.1007/s00441-010-1022-4 Garcia, 2008, Isolation, synthesis, and antimicrobial activities of naturally occurring θ-defensin isoforms from baboon leukocytes, Infect. Immun., 76, 5883, 10.1128/IAI.01100-08 Tang, 1999, A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins, Science, 286, 498, 10.1126/science.286.5439.498 Tran, 2002, Homodimeric θ-defensins from Rhesus macaque leukocytes. Isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides, J. Biol. Chem., 277, 3079, 10.1074/jbc.M109117200 Leonova, 2001, Circular minidefensins and posttranslational generation of molecular diversity, J. Leukoc. Biol., 70, 461, 10.1189/jlb.70.3.461 Yeaman, 1997, The role of platelets in antimicrobial host defense, Clin. Infect. Dis., 25, 951, 10.1086/516120 Ivanov, 2009, Comparative activities of cattle and swine platelet microbicidal proteins, Probiotics Antimicrob. Proteins, 1, 148, 10.1007/s12602-009-9016-9 Krijgsveld, 2000, Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines, J. Biol. Chem., 275, 20374, 10.1074/jbc.275.27.20374 Yeaman, 1997, Purification and in vitro activities of rabbit platelet microbicidal proteins, Infect. Immun., 65, 1023, 10.1128/IAI.65.3.1023-1031.1997 Krause, 2000, LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity, FEBS Lett., 480, 147, 10.1016/S0014-5793(00)01920-7 Park, 2001, Hepcidin, a urinary antimicrobial peptide synthesized in the liver, J. Biol. Chem., 276, 7806, 10.1074/jbc.M008922200 Krause, 2003, Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver, Protein Sci., 12, 143, 10.1110/ps.0213603 Schittek, 2001, Dermcidin: a novel human antibiotic peptide secreted by sweat glands, Nat. Immunol., 2, 1133, 10.1038/ni732 Schittek, 2012, The multiple facets of dermcidin in cell survival and host defense, J. Innate Immun., 4, 349, 10.1159/000336844 Li, 2011, Recombinant production of antimicrobial peptides in Escherichia coli: a review, Protein Expr. Purif., 80, 260, 10.1016/j.pep.2011.08.001 Boman, 1989, Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids, FEBS Lett., 259, 103, 10.1016/0014-5793(89)81505-4 Merrifield, 1995, Retro and retroenantio analogs of cecropin-melittin hybrids, Proc. Natl. Acad. Sci. U.S.A., 92, 3449, 10.1073/pnas.92.8.3449 Andreu, 1992, Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity, FEBS Lett., 296, 190, 10.1016/0014-5793(92)80377-S Oh, 2000, Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability, Antimicrob. Agents Chemother., 44, 68, 10.1128/AAC.44.1.68-72.2000 Badosa, 2007, A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria, Peptides, 28, 2276, 10.1016/j.peptides.2007.09.010 Ferre, 2009, Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100, Biophys. J., 96, 1815, 10.1016/j.bpj.2008.11.053 Torcato, 1828, Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria, Biochim. Biophys. Acta, 2013, 944 Alves, 2010, Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR, J. Biol. Chem., 285, 27536, 10.1074/jbc.M110.130955 Jindal, 2015, Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae, PLoS One, 10, e0128532, 10.1371/journal.pone.0128532 Gottler, 2009, Structure, membrane orientation, mechanism, and function of pexiganan – a highly potent antimicrobial peptide designed from magainin, Biochim. Biophys. Acta, 1788, 1680, 10.1016/j.bbamem.2008.10.009 Ge, 1999, In Vitro antibacterial properties of pexiganan, an analog of magainin, Antimicrob. Agents Chemother., 43, 782, 10.1128/AAC.43.4.782 Lipsky, 2008, Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream, Clin. Infect. Dis., 47, 1537, 10.1086/593185 Helmerhorst, 1997, Synthetic histatin analogues with broad-spectrum antimicrobial activity, Biochem. J., 326, 39, 10.1042/bj3260039 Welling, 2007, Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo, Antimicrob. Agents Chemother., 51, 3416, 10.1128/AAC.00196-07 Nielsen, 2007, Structure – activity study of the antibacterial peptide fallaxin, Protein Sci., 16, 1969, 10.1110/ps.072966007 Gottschalk, 2015, The amphibian antimicrobial peptide fallaxin analogue, FL9, affects virulence gene expression and DNA replication in Staphylococcus aureus, J. Med. Microbiol., 9, 2052 Cantisani, 2014, Structural insights into and activity analysis of the antimicrobial peptide myxinidin, Antimicrob. Agents Chemother., 58, 5280, 10.1128/AAC.02395-14 Lee, 2003, Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S, Biopolym. Pept. Sci. Sect., 71, 28, 10.1002/bip.10374 Frecer, 2004, De novo design of potent antimicrobial peptides, Antimicrob. Agents Chemother., 48, 3349, 10.1128/AAC.48.9.3349-3357.2004 Deslouches, 2005, De Novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity, Antimicrob. Agents Chemother., 49, 316, 10.1128/AAC.49.1.316-322.2005 Romani, 2013, In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens, J. Pept. Sci., 19, 554, 10.1002/psc.2532 Makovitzki, 2006, Ultrashort antibacterial and antifungal lipopeptides, Proc. Natl. Acad. Sci. U.S.A., 103, 15997, 10.1073/pnas.0606129103