The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus

Ecotoxicology and Environmental Safety - Tập 144 - Trang 330-337 - 2017
Emel Topuz1,2, Cornelis A.M. van Gestel1
1Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
2Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahn, 2014, Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans, Chemosphere, 108, 343, 10.1016/j.chemosphere.2014.01.078

Bicho, 2016, Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus, J. Hazard. Mater., 318, 608, 10.1016/j.jhazmat.2016.07.040

Borm, 2006, Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles, Toxicol. Sci., 90, 23, 10.1093/toxsci/kfj084

Castro-Ferreira, 2012, Enchytraeus crypticus as model species in soil ecotoxicology, Chemosphere, 87, 10.1016/j.chemosphere.2012.01.021

Colman, 2013, Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario, PLoS One, 8, 10.1371/journal.pone.0057189

Cornelis, 2012, Retention and dissolution of engineered silver nanoparticles in natural soils, Soil Sci. Soc. Am. J., 76, 891, 10.2136/sssaj2011.0360

Didden, 2001, Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems, Ecotoxicol Environ. Safe, 50, 25, 10.1006/eesa.2001.2075

Diez-Ortiz, 2015, Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils, Environ. Pollut., 203, 191, 10.1016/j.envpol.2015.03.033

Eom, 2013, Hypoxia inducible factor-1 (HIF-1)-flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode Caenorhabditis elegans, Toxicol. Appl. Pharmacol., 270, 106, 10.1016/j.taap.2013.03.028

Gao, 2012, Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles, Chemosphere, 89, 96, 10.1016/j.chemosphere.2012.04.024

Gomes, 2013, Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile, J. Hazard. Mater., 254–255, 336, 10.1016/j.jhazmat.2013.04.005

Gottschalk, 2010, Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis, Environ. Toxicol. Chem., 29, 1036

Haanstra, 1985, The use of sigmoidal dose response curves in soil ecotoxicological research, Plant Soil, 84, 293, 10.1007/BF02143194

Hamilton, 1977, Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays, Environ. Sci. Technol., 11, 714, 10.1021/es60130a004

He, 2013, Toxicokinetics and toxicodynamics of nickel in Enchytraeus crypticus, Environ. Toxicol. Chem., 32, 1835, 10.1002/etc.2253

Heckmann, 2011, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida, Ecotoxicology, 20, 226, 10.1007/s10646-010-0574-0

Hu, 2012, Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase, Ecotoxicol. Environ. Safe, 94, 732

ISO, 1996

Johnson, 2014, Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants, Chemosphere, 112, 49, 10.1016/j.chemosphere.2014.03.039

Kaegi, 2013, Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res., 47, 3866, 10.1016/j.watres.2012.11.060

Kent, 2014, Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant, Environ. Sci. Technol., 48, 8564, 10.1021/es404989t

Klitzke, 2015, The fate of silver nanoparticles in soil solution -Sorption of solutes and aggregation, Sci. Total Environ., 535, 54, 10.1016/j.scitotenv.2014.10.108

Kwak, 2014, Interaction of citrate-coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity in Eisenia andrei, J. Appl. Toxicol., 34, 1145, 10.1002/jat.2993

Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405

Levard, 2013, Sulfidation of silver nanoparticles: natural antidote to their toxicity, Environ. Sci. Technol., 47, 13440, 10.1021/es403527n

Liu, 2010, Ion release kinetics and particle persistence in aqueous nano-silver colloids, Environ. Sci. Technol., 44, 2169, 10.1021/es9035557

Luo, 2014, Contribution of soil properties of shooting fields to lead bioavailability and toxicity to Enchytraeus crypticus, Soil Biol. Biochem., 76, 235, 10.1016/j.soilbio.2014.05.023

Makama, 2016, Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil, Environ. Pollut., 218, 870, 10.1016/j.envpol.2016.08.016

Navarro, 2014, Remobilisation of silver and silver sulphide nanoparticles in soils, Environ. Pollut., 193, 102, 10.1016/j.envpol.2014.06.008

OECD, 2004

Odzak, 2014, Dissolution of metal and metal oxide nanoparticles in aqueous media, Environ. Pollut., 191, 132, 10.1016/j.envpol.2014.04.010

Ribeiro, 2014, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Sci. Total Environ., 466–467, 232, 10.1016/j.scitotenv.2013.06.101

Schlich, 2013, Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test, Environ. Toxicol. Chem., 32, 181, 10.1002/etc.2030

Shoults-Wilson, 2011, Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida), Ecotoxicology, 20, 385, 10.1007/s10646-010-0590-0

Sokal, 1995

Starnes, 2015, Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans, Environ. Pollut., 196, 239, 10.1016/j.envpol.2014.10.009

Topuz, 2014, A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions, Environ. Pollut., 193, 37, 10.1016/j.envpol.2014.05.029

Topuz, 2015, Agglomeration of Ag and TiO2 nanoparticles in surface and waste water: role of divalent ions and of organic carbon fractions, Environ. Pollut., 204, 313, 10.1016/j.envpol.2015.05.034

Topuz, 2015, Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium, Environ. Toxicol. Chem., 34, 2816, 10.1002/etc.3123

Tourinho, 2015, Effects of soil and dietary exposures to Ag nanoparticles and AgNO3 in the terrestrial isopod Porcellionides pruinosus, Environ. Pollut., 205, 170, 10.1016/j.envpol.2015.05.044

USEPA, 2009

Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181

Van Der Ploeg, 2014, Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil, Environ. Chem., 33, 743, 10.1002/etc.2487

Vasickova, 2015, The variability of standard artificial soils: effects on the survival and reproduction of springtail (Folsomia candida) and potworm (Enchytraeus crypticus), Ecotoxicol. Environ. Safe, 114, 38, 10.1016/j.ecoenv.2015.01.007

Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y

Whitley, 2013, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging, and sewage sludge amendment, Environ. Pollut., 182, 141, 10.1016/j.envpol.2013.06.027

Yang, 2014, Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter, Environ. Sci. Technol., 48, 3486, 10.1021/es404444n

Zhao, 2011, Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna, Environ. Toxicol. Chem., 30, 885, 10.1002/etc.451