The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahn, 2014, Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans, Chemosphere, 108, 343, 10.1016/j.chemosphere.2014.01.078
Bicho, 2016, Effects of Ag nanomaterials (NM300K) and Ag salt (AgNO3) can be discriminated in a full life cycle long term test with Enchytraeus crypticus, J. Hazard. Mater., 318, 608, 10.1016/j.jhazmat.2016.07.040
Borm, 2006, Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles, Toxicol. Sci., 90, 23, 10.1093/toxsci/kfj084
Castro-Ferreira, 2012, Enchytraeus crypticus as model species in soil ecotoxicology, Chemosphere, 87, 10.1016/j.chemosphere.2012.01.021
Colman, 2013, Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario, PLoS One, 8, 10.1371/journal.pone.0057189
Cornelis, 2012, Retention and dissolution of engineered silver nanoparticles in natural soils, Soil Sci. Soc. Am. J., 76, 891, 10.2136/sssaj2011.0360
Didden, 2001, Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems, Ecotoxicol Environ. Safe, 50, 25, 10.1006/eesa.2001.2075
Diez-Ortiz, 2015, Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils, Environ. Pollut., 203, 191, 10.1016/j.envpol.2015.03.033
Eom, 2013, Hypoxia inducible factor-1 (HIF-1)-flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode Caenorhabditis elegans, Toxicol. Appl. Pharmacol., 270, 106, 10.1016/j.taap.2013.03.028
Gao, 2012, Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles, Chemosphere, 89, 96, 10.1016/j.chemosphere.2012.04.024
Gomes, 2013, Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile, J. Hazard. Mater., 254–255, 336, 10.1016/j.jhazmat.2013.04.005
Gottschalk, 2010, Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis, Environ. Toxicol. Chem., 29, 1036
Haanstra, 1985, The use of sigmoidal dose response curves in soil ecotoxicological research, Plant Soil, 84, 293, 10.1007/BF02143194
Hamilton, 1977, Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays, Environ. Sci. Technol., 11, 714, 10.1021/es60130a004
He, 2013, Toxicokinetics and toxicodynamics of nickel in Enchytraeus crypticus, Environ. Toxicol. Chem., 32, 1835, 10.1002/etc.2253
Heckmann, 2011, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida, Ecotoxicology, 20, 226, 10.1007/s10646-010-0574-0
Hu, 2012, Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase, Ecotoxicol. Environ. Safe, 94, 732
ISO, 1996
Johnson, 2014, Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants, Chemosphere, 112, 49, 10.1016/j.chemosphere.2014.03.039
Kaegi, 2013, Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res., 47, 3866, 10.1016/j.watres.2012.11.060
Kent, 2014, Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant, Environ. Sci. Technol., 48, 8564, 10.1021/es404989t
Klitzke, 2015, The fate of silver nanoparticles in soil solution -Sorption of solutes and aggregation, Sci. Total Environ., 535, 54, 10.1016/j.scitotenv.2014.10.108
Kwak, 2014, Interaction of citrate-coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity in Eisenia andrei, J. Appl. Toxicol., 34, 1145, 10.1002/jat.2993
Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405
Levard, 2013, Sulfidation of silver nanoparticles: natural antidote to their toxicity, Environ. Sci. Technol., 47, 13440, 10.1021/es403527n
Liu, 2010, Ion release kinetics and particle persistence in aqueous nano-silver colloids, Environ. Sci. Technol., 44, 2169, 10.1021/es9035557
Luo, 2014, Contribution of soil properties of shooting fields to lead bioavailability and toxicity to Enchytraeus crypticus, Soil Biol. Biochem., 76, 235, 10.1016/j.soilbio.2014.05.023
Makama, 2016, Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil, Environ. Pollut., 218, 870, 10.1016/j.envpol.2016.08.016
Navarro, 2014, Remobilisation of silver and silver sulphide nanoparticles in soils, Environ. Pollut., 193, 102, 10.1016/j.envpol.2014.06.008
OECD, 2004
Odzak, 2014, Dissolution of metal and metal oxide nanoparticles in aqueous media, Environ. Pollut., 191, 132, 10.1016/j.envpol.2014.04.010
Ribeiro, 2014, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Sci. Total Environ., 466–467, 232, 10.1016/j.scitotenv.2013.06.101
Schlich, 2013, Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test, Environ. Toxicol. Chem., 32, 181, 10.1002/etc.2030
Shoults-Wilson, 2011, Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida), Ecotoxicology, 20, 385, 10.1007/s10646-010-0590-0
Sokal, 1995
Starnes, 2015, Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans, Environ. Pollut., 196, 239, 10.1016/j.envpol.2014.10.009
Topuz, 2014, A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions, Environ. Pollut., 193, 37, 10.1016/j.envpol.2014.05.029
Topuz, 2015, Agglomeration of Ag and TiO2 nanoparticles in surface and waste water: role of divalent ions and of organic carbon fractions, Environ. Pollut., 204, 313, 10.1016/j.envpol.2015.05.034
Topuz, 2015, Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium, Environ. Toxicol. Chem., 34, 2816, 10.1002/etc.3123
Tourinho, 2015, Effects of soil and dietary exposures to Ag nanoparticles and AgNO3 in the terrestrial isopod Porcellionides pruinosus, Environ. Pollut., 205, 170, 10.1016/j.envpol.2015.05.044
USEPA, 2009
Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6, 1769, 10.3762/bjnano.6.181
Van Der Ploeg, 2014, Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil, Environ. Chem., 33, 743, 10.1002/etc.2487
Vasickova, 2015, The variability of standard artificial soils: effects on the survival and reproduction of springtail (Folsomia candida) and potworm (Enchytraeus crypticus), Ecotoxicol. Environ. Safe, 114, 38, 10.1016/j.ecoenv.2015.01.007
Waalewijn-Kool, 2014, Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida, Ecotoxicology, 23, 1629, 10.1007/s10646-014-1302-y
Whitley, 2013, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging, and sewage sludge amendment, Environ. Pollut., 182, 141, 10.1016/j.envpol.2013.06.027
Yang, 2014, Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter, Environ. Sci. Technol., 48, 3486, 10.1021/es404444n