An intuitive review of methods for observational studies of comparative effectiveness

Steven D. Pizer1
1Health Care Financing & Economics, U.S. Department of Veterans Affairs, 150 South Huntington Ave, Boston, 02130, MA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group: Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic. JAMA 288(23), 2981–2997 (2002). doi: 10.1001/jama.288.23.2981

Baum, C.F., Shaffer, M.E., Stillman, S.: Instrumental variables and GMM: estimation and testing. Stat. J. 3(1), 1–31 (2003)

Bound, J., Jaeger, D.A., Baker, R.M.: Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J. Am. Stat. Assoc. 90, 443–450 (1995). doi: 10.2307/2291055

Clancy, C.: Health issues and opportunities at AHRQ. Testimony before the House Subcommittee on Labor-HHS-Education appropriations, Washington DC, March 5, 2008. http://www.ahrq.gov/news/test30508.htm (2008). Accessed 7 April 2008

Congressional Budget Offices: Research on the comparative effectiveness of medical treatments: issues and options for an expanded federal role. Congress of the United States, Pub. No. 2975, December 2007

Congressional Research Service: Comparative clinical effectiveness and cost-effectiveness research: background, history, and overview. CRS Report for Congress, October 15, 2007

D’Agostino Jr., R.B.: Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 17, 2265–2281 (1998). doi:10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B

Davidson, R., MacKinnon, J.G.: Estimation and Inference in Econometrics. Oxford University Press, New York (1993)

Dixon, K.: US may compare medical products; companies wary. Reuters, March 31 (2008)

Earle, C.C., Tsai, J.S., Gelber, R.D., Weinstein, M.C., Neumann, P.J., Weeks, J.C.: Effectiveness of chemotherapy for advanced lung cancer in the elderly: instrumental variable and propensity analysis. J. Clin. Oncol. 19(4), 1064–1070 (2001)

Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979). doi: 10.1214/aos/1176344552

Grootendorst, P.: A review of instrumental variables estimation of treatment effects in the applied health sciences. Health Serv. Outcomes Res. Methodol. 7, 159–179 (2007). doi: 10.1007/s10742-007-0023-6

Hausman, J.A.: Specification tests in econometrics. Econometrica 46(6), 1251–1271 (1978). doi: 10.2307/1913827

Heckman, J.J.: Dummy endogenous variables in a simultaneous equation system. Econometrica 46(4), 931–959 (1978). doi: 10.2307/1909757

Heckman, J.J.: Sample selection bias as a specification error. Econometrica 47(1), 153–161 (1979). doi: 10.2307/1912352

Imbens, G.W., Angrist, J.D.: Identification and estimation of local average treatment effects. Econometrica 62(2), 467–475 (1994). doi: 10.2307/2951620

Institute of Medicine: Learning what works best: the nation’s need for evidence on comparative effectiveness in health care. http://www.iom.edu/ebm-effectiveness (2007) Accessed 19 May 2008

Newey, W.K., Powell, J.L., Vella, F.: Nonparametric estimation of triangular simultaneous equations models. Econometrica 67, 565–603 (1999). doi: 10.1111/1468-0262.00037

Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983). doi: 10.1093/biomet/70.1.41

Rosenbaum, P.R., Rubin, D.B.: Reducing bias in observational studies using subclassification on the propensity score. J. Am. Stat. Assoc. 79, 516–524 (1984). doi: 10.2307/2288398

Rosenbaum, P.R., Rubin, D.B.: Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 39, 33–38 (1985). doi: 10.2307/2683903

Staiger, D., Stock, J.: Instrumental variables regression with weak instruments. Econometrica 65, 557–586 (1997). doi: 10.2307/2171753

Stukel, T.A., Fisher, E.S., Wennberg, D.E., Alter, D.A., Gottlieb, D.J., Vermeulen, M.J.: Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. JAMA 297(3), 278–285 (2007). doi: 10.1001/jama.297.3.278

Terza, J.V., Bradford, W.D., Dismuke, C.E.: The use of linear instrumental variables methods in health services research and health economics: a cautionary note. Health Serv. Res. 43(3), 1102–1120 (2008a). doi: 10.1111/j.1475-6773.2007.00807.x

Terza, J.V., Basu, A., Rathouz, P.J.: Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. J. Health Econ. 27, 531–543 (2008b). doi: 10.1016/j.jhealeco.2007.09.009

Wang, P.S., Schneeweiss, S., Avorn, J., Fischer, M.A., Mogun, H., Solomon, D.H., Brookhart, M.A.: Risk of death in elderly users of conventional vs. atypical antipsychotic medications. N. Engl. J. Med. 353(22), 2335–2341 (2005). doi: 10.1056/NEJMoa052827