A novel ensemble method for k-nearest neighbor

Pattern Recognition - Tập 85 - Trang 13-25 - 2019
Youqiang Zhang1, Guo Cao1, Bisheng Wang1, Xue-song Li1
1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dietterich, 1997, Machine learning research: four current directions, AI Mag., 18, 97

Zhou, 2005, Ensembling local learners through multimodal perturbation, IEEE Trans. Syst. Man, Cybern. Part B Cybern., 35, 725, 10.1109/TSMCB.2005.845396

Ho, 1998, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell., 20, 832, 10.1109/34.709601

Ho, 1998, Nearest neighbors in random subspaces, 1451, 640

Gu, 2018, Random subspace based ensemble sparse representation, Pattern Recognit., 74, 544, 10.1016/j.patcog.2017.09.016

Rodríguez, 2006, Rotation forest: a new classifier ensemble method, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1619, 10.1109/TPAMI.2006.211

Kuncheva, 2007, An experimental study on rotation forest ensembles, 459

Siedlecki, 1989, A note on genetic algorithms for large-scale feature selection, Pattern Recognit. Lett., 10, 335, 10.1016/0167-8655(89)90037-8

Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655

Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504

Zhang, 2000, Neural networks for classification: a survey, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.), 30, 451, 10.1109/5326.897072

Gabrys, 2006, Genetic algorithms in classifier fusion, Appl. Soft Comput., 6, 337, 10.1016/j.asoc.2005.11.001

Kocev, 2013, Tree ensembles for predicting structured outputs, Pattern Recognit., 46, 817, 10.1016/j.patcog.2012.09.023

Tian, 2012, Coevolutionary learning of neural network ensemble for complex classification tasks, Pattern Recognit., 45, 1373, 10.1016/j.patcog.2011.09.012

Bao, 2004, Combining multiple k-nearest neighbor classifiers using different distance functions, 3177, 634

Ishii, 2005, Combining classification improvements by ensemble processing, 240

Altinçay, 2007, Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation, Appl. Soft Comput., 7, 1072, 10.1016/j.asoc.2006.10.002

Nanni, 2009, Particle swarm optimization for ensembling generation for evidential k-nearest-neighbour classifier, Neural Comput. Appl., 18, 105, 10.1007/s00521-007-0162-2

Pawlak, 1982, Rough sets, Int. J. Comput. Inf. Sci., 11, 341, 10.1007/BF01001956

Yao, 1998, Relational interpretations of neighborhood operators and rough set approximation operators, Inf. Sci., 111, 239, 10.1016/S0020-0255(98)10006-3

Hu, 2008, Neighborhood classifiers, Expert Syst. Appl., 34, 866, 10.1016/j.eswa.2006.10.043

Hu, 2008, Neighborhood rough set based heterogeneous feature subset selection, Inf. Sci., 178, 3577, 10.1016/j.ins.2008.05.024

Denoeux, 1995, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Syst. Man. Cybern., 25, 804, 10.1109/21.376493

Groenen, 2001, Fuzzy clustering with squared Minkowski distances, Fuzzy Sets Syst., 120, 227, 10.1016/S0165-0114(98)00403-5

Stanfill, 1986, Toward memory-based reasoning, ACM Commun., 29, 1213, 10.1145/7902.7906

Wilson, 1997, Improved heterogeneous distance functions, J. Artif. Intell. Res., 6, 1, 10.1613/jair.346

Huang, 2005, Automated variable weighting in k-means type clustering, IEEE Trans. Pattern Anal. Mach. Intell., 27, 657, 10.1109/TPAMI.2005.95

Lian, 2015, An evidential classifier based on feature selection and two-step classification strategy, Pattern Recognit., 48, 2318, 10.1016/j.patcog.2015.01.019

Kleinberg, 1990, Stochastic discrimination, Ann. Math. Artif. Intell., 1, 207, 10.1007/BF01531079

Luo, 2013, Boosting the k-nearest-neighborhood based incremental collaborative filtering, Knowl.-Based Syst., 53, 90, 10.1016/j.knosys.2013.08.016

Calvo-Zaragoza, 2015, Improving kNN multi-label classification in Prototype selection scenarios using class proposals, Pattern Recognit., 48, 1608, 10.1016/j.patcog.2014.11.015

Prasartvit, 2013, Reducing bioinformatics data dimension with ABC-kNN, Neurocomputing, 116, 367, 10.1016/j.neucom.2012.01.045

García-Pedrajas, 2009, Boosting k-nearest neighbor classifier by means of input space projection, Expert Syst. Appl., 36, 10570, 10.1016/j.eswa.2009.02.065

Lichman

Kuncheva, 2014

Maclin, 1999, Popular ensemble methods: an empirical study, J. Artif. Intell. Res., 11, 169, 10.1613/jair.614

Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1

Liu, 2008, A weighted rough set based method developed for class imbalance learning, Inf. Sci., 178, 1235, 10.1016/j.ins.2007.10.002

Pillai, 2017, Designing multi-label classifiers that maximize F-measures: state of the art, Pattern Recognit., 61, 394, 10.1016/j.patcog.2016.08.008

Cavalcanti, 2016, Combining diversity measures for ensemble pruning, Pattern Recognit. Lett., 74, 38, 10.1016/j.patrec.2016.01.029

Liang, 2018, Efficient multi-modal geometric mean metric learning, Pattern Recognit., 75, 1339, 10.1016/j.patcog.2017.02.032

Zhai, 2018, Parametric local multiview hamming distance metric learning, Pattern Recognit., 75, 250, 10.1016/j.patcog.2017.06.018

Lv, 2017, Metric learning via feature weighting for scalable image retrieval, Pattern Recognit. Lett., 109, 97, 10.1016/j.patrec.2017.09.026

Nguyen, 2017, Supervised distance metric learning through maximization of the Jeffrey divergence, Pattern Recognit., 64, 215, 10.1016/j.patcog.2016.11.010

Wang, 2017, Multi-view metric learning based on KL-divergence for similarity measurement, Neurocomputing, 238, 269, 10.1016/j.neucom.2017.01.062