Model-based cluster and discriminant analysis with the MIXMOD software

Computational Statistics and Data Analysis - Tập 51 - Trang 587-600 - 2006
Christophe Biernacki1, Gilles Celeux2, Gérard Govaert3, Florent Langrognet4
1UMR 8524, CNRS & Université de Lille 1, 59655 Villeneuve d’Ascq, France
2INRIA Futurs, 91405 Orsay, France
3UMR 6599, CNRS & Université de Technologie de Compiègne, 60205 Compiègne, France
4UMR 6623, CNRS & Université de Franche-Comté, 25030 Besançon, France

Tài liệu tham khảo

Banfield, 1993, Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803, 10.2307/2532201 Bensmail, 1996, Regularized Gaussian discriminant analysis through eigenvalue decomposition, J. Amer. Statist. Assoc., 91, 1743, 10.2307/2291604 Biernacki, 1999, Choosing models in model-based clustering and discriminant analysis, J. Statist. Comput. Simulation, 64, 49, 10.1080/00949659908811966 Biernacki, 1999, An improvement of the NEC criterion for assessing the number of clusters in a mixture model, Pattern Recognition Lett., 20, 267, 10.1016/S0167-8655(98)00144-5 Biernacki, 2000, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Trans. Pattern Analysis and Machine Intelligence, 22, 719, 10.1109/34.865189 Biernacki, 2002, A generalized discriminant rule when training population and test population differ on their descriptive parameters, Biometrics, 58, 387, 10.1111/j.0006-341X.2002.00387.x Biernacki, 2003, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Comput. Statist. Data Anal., 41, 561, 10.1016/S0167-9473(02)00163-9 Bozdogan, 1993, Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-fisher information matrix, 40 Celeux, 1985, The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Comput. Statist. Quart., 2, 73 Celeux, 1992, A classification EM algorithm for clustering and two stochastic versions, Comput. Statist. Data Anal., 14, 315, 10.1016/0167-9473(92)90042-E Celeux, 1995, Gaussian parsimonious clustering models, Pattern Recognition, 28, 781, 10.1016/0031-3203(94)00125-6 Celeux, 1996, An entropy criterion for assessing the number of clusters in a mixture model, J. Classification, 13, 195, 10.1007/BF01246098 Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc. B, 39, 1 Diday, 1974, Classification avec distance adaptative, C. R. Acad. Sci. Paris, Sér. A, 278, 993 Fraley, 1998, How many clusters? Which clustering method? Answers via model-based cluster analysis, Comput. J., 41, 578, 10.1093/comjnl/41.8.578 Friedman, 1967, On some invariant criteria for grouping data, J. Amer. Statist. Assoc., 62, 1159, 10.2307/2283767 Kéribin, 2000, Consistent estimation of the order of mixture models, Sankhyã Ser. A, 1, 49 Maronna, 1974, Multivariate clustering procedure with variable metrics, Biometrics, 30, 499, 10.2307/2529203 McLachlan, 1992 McLachlan, 1997 McLachlan, 2000 Schroeder, 1976, Analyse d’un mélange de distributions de probabilité de même type, Rev. Statist. Appl., 24, 39 Schwarz, 1978, Estimating the number of components in a finite mixture model, Ann. Statist., 6, 461, 10.1214/aos/1176344136 Scott, 1971, Clustering methods based on likelihood ratio criteria, Biometrics, 27, 387, 10.2307/2529003 Ward, 1963, Hierarchical grouping to optimize an objective function, J. Amer. Statist. Assoc., 58, 236, 10.2307/2282967