Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium
Tóm tắt
The main olfactory epithelium (MOE) in mammals is a specialized organ to detect odorous molecules in the external environment. The MOE consists of four types of cells: olfactory sensory neurons, supporting cells, basal cells, and microvillous cells. Among these, development and function of microvillous cells remain largely unknown. Recent studies have shown that a population of microvillous cells expresses the monovalent cation channel Trpm5 (transient receptor potential channel M5). To examine functional differentiation of Trpm5-expressing microvillous cells in the MOE, we investigated the expression and function of Skn-1a, a POU (Pit-Oct-Unc) transcription factor required for functional differentiation of Trpm5-expressing sweet, umami, and bitter taste bud cells in oropharyngeal epithelium and solitary chemosensory cells in nasal respiratory epithelium. Skn-1a is expressed in a subset of basal cells and apical non-neuronal cells in the MOE of embryonic and adult mice. Two-color in situ hybridization revealed that a small population of Skn-1a-expressing cells was co-labeled with Mash1/Ascl1 and that most Skn-1a-expressing cells coexpress Trpm5. To investigate whether Skn-1a has an irreplaceable role in the MOE, we analyzed Skn-1a-deficient mice. In the absence of Skn-1a, olfactory sensory neurons differentiate normally except for a limited defect in terminal differentiation in ectoturbinate 2 of some of MOEs examined. In contrast, the impact of Skn-1a deficiency on Trpm5-expressing microvillous cells is much more striking: Trpm5, villin, and choline acetyltransferase, cell markers previously shown to identify Trpm5-expressing microvillous cells, were no longer detectable in Skn-1a-deficient mice. In addition, quantitative analysis demonstrated that the density of superficial microvillous cells was significantly decreased in Skn-1a-deficient mice. Skn-1a is expressed in a minority of Mash1-positive olfactory progenitor cells and a majority of Trpm5-expressing microvillous cells in the main olfactory epithelium. Loss-of-function mutation of Skn-1a resulted in complete loss of Trpm5-expressing microvillous cells, whereas most of olfactory sensory neurons differentiated normally. Thus, Skn-1a is a critical regulator for the generation of Trpm5-expressing microvillous cells in the main olfactory epithelium in mice.
Tài liệu tham khảo
Farbman A: Cell Biology of Olfactory Epithelium. 2000, New York: Wiley-Liss, 2
Elsaesser R, Montani G, Tirindelli R, Paysan J: Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci. 2005, 21 (10): 2692-2700. 10.1111/j.1460-9568.2005.04108.x.
Hansen A, Finger TE: Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci. 2008, 9: 115-10.1186/1471-2202-9-115.
Hegg CC, Jia C, Chick WS, Restrepo D, Hansen A: Microvillous cells expressing IP3 receptor type 3 in the olfactory epithelium of mice. Eur J Neurosci. 2010, 32 (10): 1632-1645. 10.1111/j.1460-9568.2010.07449.x.
Lin W, Ezekwe EA, Zhao Z, Liman ER, Restrepo D: TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci. 2008, 9: 114-10.1186/1471-2202-9-114.
Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D: TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol. 2008, 99 (3): 1451-1460. 10.1152/jn.01195.2007.
Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W: Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One. 2010, 5 (7): e11924-10.1371/journal.pone.0011924.
Riera CE, Vogel H, Simon SA, Damak S, Le Coutre J: Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. J Neurosci. 2009, 29 (8): 2654-2662. 10.1523/JNEUROSCI.4694-08.2009.
Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE: Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA. 2010, 107 (7): 3210-3215. 10.1073/pnas.0911934107.
Zhang Z, Zhao Z, Margolskee R, Liman E: The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci. 2007, 27 (21): 5777-5786. 10.1523/JNEUROSCI.4973-06.2007.
Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B: Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature. 2005, 438 (7070): 1022-1025. 10.1038/nature04248.
Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W: Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol. 2011, 106 (3): 1274-1287. 10.1152/jn.00186.2011.
Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K: Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat Nneurosci. 2011, 14 (6): 685-687. 10.1038/nn.2820.
Ohmoto M, Yamaguchi T, Yamashita J, Bachmanov AA, Hirota J, Matsumoto I: Pou2f3/Skn-1a is necessary for the generation or differentiation of solitary chemosensory cells in the anterior nasal cavity. Biosci Biotechnol Biochem. 2013, 77 (10): 2154-2156. 10.1271/bbb.130454.
Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL: Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA. 2003, 100 (15): 8981-8986. 10.1073/pnas.1531172100.
Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL: Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell. 1993, 75 (3): 463-476. 10.1016/0092-8674(93)90381-Y.
Tallini YN, Shui B, Greene KS, Deng KY, Doran R, Fisher PJ, Zipfel W, Kotlikoff MI: BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics. 2006, 27 (3): 391-397. 10.1152/physiolgenomics.00092.2006.
Hirota J, Mombaerts P: The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons. Proc Natl Acad Sci USA. 2004, 101 (23): 8751-8755. 10.1073/pnas.0400940101.
Ishii T, Hirota J, Mombaerts P: Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol. 2003, 13 (5): 394-400. 10.1016/S0960-9822(03)00092-7.
Ishii T, Omura M, Mombaerts P: Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J Neurocytol. 2004, 33 (6): 657-669. 10.1007/s11068-005-3334-y.
Hirota J, Omura M, Mombaerts P: Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol Cell Neurosci. 2007, 34 (4): 679-688. 10.1016/j.mcn.2007.01.014.