Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium

Springer Science and Business Media LLC - Tập 15 - Trang 1-10 - 2014
Tatsuya Yamaguchi1, Junpei Yamashita1, Makoto Ohmoto2, Imad Aoudé3, Tatsuya Ogura3, Wangmei Luo3, Alexander A Bachmanov2, Weihong Lin3, Ichiro Matsumoto2, Junji Hirota1,4
1Department of Bioengineering, Graduate School of Bioscience and Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
2Monell Chemical Senses Center, Philadelphia USA
3Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, USA
4Center for Biological Resources and Informatics, Tokyo Institute of Technology, Midori-ku, Japan

Tóm tắt

The main olfactory epithelium (MOE) in mammals is a specialized organ to detect odorous molecules in the external environment. The MOE consists of four types of cells: olfactory sensory neurons, supporting cells, basal cells, and microvillous cells. Among these, development and function of microvillous cells remain largely unknown. Recent studies have shown that a population of microvillous cells expresses the monovalent cation channel Trpm5 (transient receptor potential channel M5). To examine functional differentiation of Trpm5-expressing microvillous cells in the MOE, we investigated the expression and function of Skn-1a, a POU (Pit-Oct-Unc) transcription factor required for functional differentiation of Trpm5-expressing sweet, umami, and bitter taste bud cells in oropharyngeal epithelium and solitary chemosensory cells in nasal respiratory epithelium. Skn-1a is expressed in a subset of basal cells and apical non-neuronal cells in the MOE of embryonic and adult mice. Two-color in situ hybridization revealed that a small population of Skn-1a-expressing cells was co-labeled with Mash1/Ascl1 and that most Skn-1a-expressing cells coexpress Trpm5. To investigate whether Skn-1a has an irreplaceable role in the MOE, we analyzed Skn-1a-deficient mice. In the absence of Skn-1a, olfactory sensory neurons differentiate normally except for a limited defect in terminal differentiation in ectoturbinate 2 of some of MOEs examined. In contrast, the impact of Skn-1a deficiency on Trpm5-expressing microvillous cells is much more striking: Trpm5, villin, and choline acetyltransferase, cell markers previously shown to identify Trpm5-expressing microvillous cells, were no longer detectable in Skn-1a-deficient mice. In addition, quantitative analysis demonstrated that the density of superficial microvillous cells was significantly decreased in Skn-1a-deficient mice. Skn-1a is expressed in a minority of Mash1-positive olfactory progenitor cells and a majority of Trpm5-expressing microvillous cells in the main olfactory epithelium. Loss-of-function mutation of Skn-1a resulted in complete loss of Trpm5-expressing microvillous cells, whereas most of olfactory sensory neurons differentiated normally. Thus, Skn-1a is a critical regulator for the generation of Trpm5-expressing microvillous cells in the main olfactory epithelium in mice.

Tài liệu tham khảo

Farbman A: Cell Biology of Olfactory Epithelium. 2000, New York: Wiley-Liss, 2 Elsaesser R, Montani G, Tirindelli R, Paysan J: Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci. 2005, 21 (10): 2692-2700. 10.1111/j.1460-9568.2005.04108.x. Hansen A, Finger TE: Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci. 2008, 9: 115-10.1186/1471-2202-9-115. Hegg CC, Jia C, Chick WS, Restrepo D, Hansen A: Microvillous cells expressing IP3 receptor type 3 in the olfactory epithelium of mice. Eur J Neurosci. 2010, 32 (10): 1632-1645. 10.1111/j.1460-9568.2010.07449.x. Lin W, Ezekwe EA, Zhao Z, Liman ER, Restrepo D: TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci. 2008, 9: 114-10.1186/1471-2202-9-114. Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D: TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol. 2008, 99 (3): 1451-1460. 10.1152/jn.01195.2007. Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W: Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One. 2010, 5 (7): e11924-10.1371/journal.pone.0011924. Riera CE, Vogel H, Simon SA, Damak S, Le Coutre J: Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. J Neurosci. 2009, 29 (8): 2654-2662. 10.1523/JNEUROSCI.4694-08.2009. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE: Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA. 2010, 107 (7): 3210-3215. 10.1073/pnas.0911934107. Zhang Z, Zhao Z, Margolskee R, Liman E: The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci. 2007, 27 (21): 5777-5786. 10.1523/JNEUROSCI.4973-06.2007. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B: Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature. 2005, 438 (7070): 1022-1025. 10.1038/nature04248. Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W: Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol. 2011, 106 (3): 1274-1287. 10.1152/jn.00186.2011. Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K: Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat Nneurosci. 2011, 14 (6): 685-687. 10.1038/nn.2820. Ohmoto M, Yamaguchi T, Yamashita J, Bachmanov AA, Hirota J, Matsumoto I: Pou2f3/Skn-1a is necessary for the generation or differentiation of solitary chemosensory cells in the anterior nasal cavity. Biosci Biotechnol Biochem. 2013, 77 (10): 2154-2156. 10.1271/bbb.130454. Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL: Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA. 2003, 100 (15): 8981-8986. 10.1073/pnas.1531172100. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL: Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell. 1993, 75 (3): 463-476. 10.1016/0092-8674(93)90381-Y. Tallini YN, Shui B, Greene KS, Deng KY, Doran R, Fisher PJ, Zipfel W, Kotlikoff MI: BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics. 2006, 27 (3): 391-397. 10.1152/physiolgenomics.00092.2006. Hirota J, Mombaerts P: The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons. Proc Natl Acad Sci USA. 2004, 101 (23): 8751-8755. 10.1073/pnas.0400940101. Ishii T, Hirota J, Mombaerts P: Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol. 2003, 13 (5): 394-400. 10.1016/S0960-9822(03)00092-7. Ishii T, Omura M, Mombaerts P: Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J Neurocytol. 2004, 33 (6): 657-669. 10.1007/s11068-005-3334-y. Hirota J, Omura M, Mombaerts P: Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol Cell Neurosci. 2007, 34 (4): 679-688. 10.1016/j.mcn.2007.01.014.