Direct structural evidence supporting a revolving mechanism in DNA packaging motors
Tài liệu tham khảo
Dai X, Zhou ZH (2018) Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360(6384):eaa07298. https://doi.org/10.1126/science.aao7298
Guo P, Erickson S, Anderson D (1987a) A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science 236(4802):690–694
Guo P, Peterson C, Anderson D (1987b) Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage φ29. J Mol Biol 197(2):229–236
Guo P, Zhang C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage φ29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2(1):149–155
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X (2019) Controlling the revolving and rotating motion direction of asymmetric hexameric nanomotor by arginine finger and channel chirality. ACS Nano 13(6):6207–6223
Hendrix RW (1998) Bacteriophage DNA packaging: RNA gears in a DNA transport machine. Cell 94(2):147–150
Ibarra B, Castón JR, Llorca O, Valle M, Valpuesta JM, Carrascosa JL (2000) Topology of the components of the DNA packaging machinery in the phage φ29 prohead. J Mol Biol 298(5):807–815
Kumar R, Grubmüller H (2014) Elastic properties and heterogeneous stiffness of the phi29 motor connector channel. Biophys J 106(6):1338–1348
Li M, Ou-Yang Z-C, Shu Y-G (2018) Advances in the study of the mechanochemical coupling of kinesin. Int J Mod Phys B 32(18):1840001. https://doi.org/10.1142/S0217979218400015
Morais MC, Tao Y, Olson NH, Grimes S, Jardine PJ, Anderson DL, Baker TS, Rossmann MG (2001) Cryoelectron-microscopy image reconstruction of symmetry mismatches in bacteriophage φ29. J Struct Biol 135(1):38–46
Morais MC, Koti JS, Bowman VD, Reyes-Aldrete E, Anderson DL, Rossmann MG (2008) Defining molecular and domain boundaries in the bacteriophage ϕ29 DNA packaging motor. Structure 16(8):1267–1274
Schwartz C, De Donatis GM, Zhang H, Fang H, Guo P (2013) Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 443(1):28–39
Serwer P (2003) Models of bacteriophage DNA packaging motors. J Struct Biol 141(3):179–188
Shu Y-G, Lai P-Y (2008) Systematic kinetics study of FoF1-ATPase: analytic results and comparison with experiments. J Phys Chem B 112(42):13453–13459
Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL (2000) Structure of the bacteriophage φ29 DNA packaging motor. Nature 408(6813):745–750
Sun S, Kondabagil K, Draper B, Alam TI, Bowman VD, Zhang Z, Hegde S, Fokine A, Rossmann MG, Rao VB (2008) The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135(7):1251–1262
Trottier M, Guo P (1997) Approaches to determine stoichiometry of viral assembly components. J Virol 71(1):487–494
Wang J, Yuan S, Zhu D, Tang H, Wang N, Chen W, Gao Q, Li Y, Wang J, Liu H (2018) Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat Commun 9(1):1–10
Yang Y, Yang P, Wang N, Chen Z, Su D, Zhou ZH, Rao Z, Wang X (2020) Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein Cell 11(5):339–351
Yuan S, Wang J, Zhu D, Wang N, Gao Q, Chen W, Tang H, Wang J, Zhang X, Liu H (2018) Cryo-EM structure of a herpesvirus capsid at 3.1 Å. Science 360(6384):eaao7283. https://doi.org/10.1126/science.aao7283
Zhao H, Christensen TE, Kamau YN, Tang L (2013) Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. Proc Natl Acad Sci USA 110(20):8075–8080
Zhao Z, De-Donatis GM, Schwartz C, Fang H, Li J, Guo P (2016) An arginine finger regulates the sequential action of asymmetrical hexameric ATPase in the double-stranded DNA translocation motor. Mol Cell Biol 36(19):2514–2523
Zhu D, Wang X, Fang Q, Van Etten JL, Rossmann MG, Rao Z, Zhang X (2018) Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nat Commun 9(1):1–7