So sánh khái niệm giữa các thuật toán tìm kiếm chim cu cu, tối ưu hóa đàn hạt, tiến hóa vi phân và thuộc địa ong nhân tạo

Artificial Intelligence Review - Tập 39 - Trang 315-346 - 2011
Pinar Civicioglu1, Erkan Besdok2
1Department of Aircraft Electrics and Electronics, College of Aviation, Erciyes University, Kayseri, Turkey
2Engineering Faculty, Department of Geomatics Engineering, Erciyes University, Kayseri, Turkey

Tóm tắt

Trong bài báo này, các khái niệm thuật toán của các thuật toán Tìm kiếm chim cu cu (CK), Tối ưu hóa đàn hạt (PSO), Tiến hóa vi phân (DE) và Thuộc địa ong nhân tạo (ABC) đã được phân tích. Sự thành công trong việc giải quyết các bài toán tối ưu hóa số của các thuật toán này cũng đã được so sánh thống kê thông qua việc kiểm tra trên 50 hàm chuẩn khác nhau. Kết quả thực nghiệm cho thấy sự thành công trong việc giải quyết bài toán của thuật toán CK rất gần với thuật toán DE. Độ phức tạp thời gian chạy và số lần đánh giá hàm cần thiết để đạt được điểm tối thiểu toàn cục bằng thuật toán DE thường nhỏ hơn so với các thuật toán so sánh. Hiệu suất của các thuật toán CK và PSO về mặt thống kê gần với hiệu suất của thuật toán DE hơn so với thuật toán ABC. Các thuật toán CK và DE cung cấp kết quả mạnh mẽ và chính xác hơn so với các thuật toán PSO và ABC.

Từ khóa

#thuật toán tối ưu hóa #tối ưu hóa đàn hạt #tìm kiếm chim cu cu cu #tiến hóa vi phân #thuộc địa ong nhân tạo

Tài liệu tham khảo

Akay B, Karaboga D (2010) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci (in press, online version) Ali MM, Torn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10): 1703–1725 Bin X, Jie C, Zhi-Hong P, Feng P (2010) An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci 53(5): 980–989 Chaoshun L, Jianzhong Z (2011) Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers Manag 52(1): 374–381 Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1): 58–73 Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill, USA Das S, Suganthan P (2009) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1): 4–31 Das S, Mukhopadhyay A, Roy A, Abraham A, Panigrahi BK (2011) Exploratory power of the Harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 4(1): 89–106 Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2): 182–197 Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2): 171–195 Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1): 29–41 Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(8): 851–871 Dorigo M, Trianni V, Sahin E et al (2004) Evolving self-organizing behaviors for a swarm-bot. Auton Robots 17(2–3): 223–245 Duman S, Guvenc U, Yorukeren N (2010) Gravitational search algorithm for economic dispatch with valve-point effects. Int Rev Electr Eng Iree 5(6): 2890–2895 Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of IEEE congress on evolutionary computation vol 1, pp 94–100 Esmat R, Hossein NP, Saeid S (2010) Bgsa: binary gravitational search algorithm. Nat Comput 9(3): 727–745 Esmat R, Hossien NP, Saeid S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1): 117–122 Fei K, Junjie L, Qing X (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87(13–14): 861–870 Ferrante N, Ville T (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1–2): 61–106 Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76(2): 60–68 Haupt R (1995) Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems. IEEE Trans Magn 31(3): 1932–1935 Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization. Kluwer Academic Publishers, Dordrecht, The Netherland Janez B, Borko B, Saso G et al (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7): 617–629 Juang C (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern Part B Cybern 34(2): 997–1006 Kaelo P, Ali MM (2006) A numerical study of some modified differential evolution algorithms. Eur J Oper Res 169(3): 1176–1184 Karaboga D, Akay B (2009a) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(12): 108–132 Karaboga D, Akay B (2009b) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1–4): 61–85 Karaboga D, Basturk B (2007a) Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. Lecture Notes Comput Sci 4529: 789–798 Karaboga D, Basturk B (2007b) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3): 459–471 Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital iir filters. J Frankl Inst Eng Appl Math 346(4): 328–348 Lee K, Geem ZW (2004) A new structural optimization method based on the Harmony search algorithm. Comput Struct 82(9–10): 781–798 Lee K, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38): 3902–3933 Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6): 448–462 Mahamed GO, Mehrdad M (2008) Global-best Harmony search. Appl Math Comput 198(2): 643–656 Mahdavi M, Fesanghary M, Damangir E (2007) An improved Harmony search algorithm for solving optimization problems. Appl Math Comput 188(2): 1567–1579 Martinoli A, Easton K, Agassounon W (2004) Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Int J Robot Res 23(4-5): 415–436 Mersha AG, Dempe S (2011) Direct search algorithm for bilevel programming problems. Comput Optim Appl 49(1): 1–15 Nowak W, Cirpka OA (2004) A modified levenberg-marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7): 737–750 Ong YS, Lim MH, Zhu N et al (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 36(1): 141–152 Price K, Storn R (1997) Differential evolution. Dr Dobbs J 22(4): 18–24 Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin, Germany Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13): 2232–2248 Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3): 240–255 Shahryar R, Hamid RT, Magdy MAS (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1): 64–79 Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms for classification tasks. Comput Optim Appl 30(5–6): 767–783 Storn R (1999) System design by constraint adaptation and differential evolution. IEEE Trans Evol Comput 3(1): 22–34 Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4): 341–359 Swagatam D, Ajith A, Uday KC et al (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3): 526–553 Tahk MJ, Park MS, Woo HW, Kim HJ (2009) Hessian approximation algorithms for hybrid optimization methods. Eng Optim 41(7): 609–633 Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6): 317–325 Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems. Congr Evol Comput, CEC2004 2: 1980–1987 Yang X (2005) Engineering optimizations via nature-inspired virtual bee algorithms. Lecture Notes Comput Sci 3562: 317–323 Yang X, Deb S (2009) Cuckoo search via levey flights. World congress on nature and biologically inspired computing’NABIC-2009, vol 4. Coimbatore, pp 210–214 Yang XS (2009) Firefly algorithms for multimodal optimization. Lecture Notes Comput Sci 5792: 169–178 Yang XS, Deb S (2010) Engineering optimisation by Cuckoo search. Int J Math Modell Numer Optim 1(4): 330–343 Yoshida H, Kawata K, Fukuyama Y et al (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4): 1232–1239 Zhang J, Sanderson A (2009) Tracking and optimizing dynamic systems with particle swarms. IEEE Trans Evol Comput 13(5): 945–958 Zhang J, Chung H, Lo W (2007) Engineering optimizations via nature-inspired virtual bee algorithms. IEEE Trans Evol Comput 11(3): 326–335 Zhua G, Kwongb S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7): 3166–3173