Relation between the Chiral Separation Effect and the Axial Anomaly in Real-Time Formalism
Tóm tắt
The relation between the Chiral separation effect(CSE) and the axial anomaly in point-splitting method in real time formalism(RTF) is shown. As a consequence the difference of protection mechanism of CSE and of the axial anomaly is shown.
Tài liệu tham khảo
M. A. Metlitski and A. R. Zhitnitsky, “Anomalous axion interactions and topological currents in dense matter,” Phys. Rev. 72, 045011 (2005). arXiv:hep-ph/0505072v1.
M. Phur and P. V. Buividovich, “Numerical study of nonperturbative corrections to the chiral separation effect in quenched finite-density QCD,” Phys. Rev. Lett. 118, 182003 (2017). https://doi.org/10.1103/PhysRevLett.118.192003. arXiv:1611.07263 [hep-lat].
K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Chiral magnetic effect,” Phys. Rev. D 78, (2008). 0808.3382 [hep-ph].
A. Vilenkin, “Quantum field theory at finite temperature in a rotating system,” Phys. Rev. D 21, 2260–2269 (1980).
M. A. Zubkov, “Absence of equilibrium chiral magnetic effect,” Phys. Rev. D 93, 105036 (2016). arXiv:1605.08724 [hep-ph].
P. V. Buividovich, “Anomalous transport with overlap fermions,” Nucl. Phys. A 925, 218–253 (2014). arXiv-:1312.1843 [hep-lat].
A. Alekseev, V. Cheianov, and J. Froehlich, “Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly,” Phys. Rev. Lett. 81, 3503 (1998). arXiv:cond-mat/9803346.
L. Dolan and R. Jackiw, “Symmetry behavior at finite temperature,” Phys. Rev. D 9, 3320 (1974).
M. Laine and A. Vuorinen, “Basics of thermal field theory—a tutorial on perturbative computations,” Lect. Notes Phys. 925, 1–281 (2016). arxiv.org/abs/1701.01554.