Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine

Electrochimica Acta - Tập 88 - Trang 301-309 - 2013
Hadi Hosseini1, Hamid Ahmar1, Ali Dehghani1, Akbar Bagheri1, Ali Reza Fakhari1, Mostafa M. Amini1
1Department of Chemistry, Shahid Beheshti University, G.C, P.O. Box 19396-4716, Tehran, Iran

Tài liệu tham khảo

Yaghi, 1995, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society, 117, 10401, 10.1021/ja00146a033 Li, 1999, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276, 10.1038/46248 Klein, 2009, A mesoporous metal–organic framework, Angewandte Chemie International Edition, 48, 9954, 10.1002/anie.200904599 O’Keeffe, 2000, Frameworks for extended solids: geometrical design principles, Journal of Solid State Chemistry, 152, 3, 10.1006/jssc.2000.8723 Hoskins, 1990, Journal of the American Chemical Society, 112, 1546, 10.1021/ja00160a038 Férey, 2008, Hybrid porous solids: past, present, future, Chemical Society Reviews, 37, 191, 10.1039/B618320B Farha, 2010, Rational design, synthesis, purification, and activation of metal−organic framework materials, Accounts of Chemical Research, 43, 1166, 10.1021/ar1000617 Phan, 2010, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Accounts of Chemical Research, 43, 58, 10.1021/ar900116g Kitagawa, 2004, Functional porous coordination polymers, Angewandte Chemie International Edition, 43, 2334, 10.1002/anie.200300610 Perry, 2009, Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks, Chemical Society Reviews, 38, 1400, 10.1039/b807086p Sumida, 2012, Carbon dioxide capture in metal-organic frameworks, Chemical Reviews, 112, 724, 10.1021/cr2003272 Matsuda, 2005, Highly controlled acetylene accommodation in a metal–organic microporous material, Nature, 436, 238, 10.1038/nature03852 Czaja, 2009, Industrial applications of metal–organic frameworks, Chemical Society Reviews, 38, 1284, 10.1039/b804680h An, 2009, Cation-triggered drug release from a porous zinc−adeninate metal–organic framework, Journal of the American Chemical Society, 131, 8376, 10.1021/ja902972w Allendorf, 2009, Luminescent metal–organic frameworks, Chemical Society Reviews, 38, 1330, 10.1039/b802352m Haldoupis, 2010, Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations, Journal of the American Chemical Society, 132, 7528, 10.1021/ja1023699 Hermes, 2005, Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111), Journal of the American Chemical Society, 127, 13744, 10.1021/ja053523l Hermes, 2006, Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5, Journal of Materials Chemistry, 16, 2464, 10.1039/B603664C Huang, 2012, Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal–organic frameworks and catalytic for dehalogenation of aryl chlorides, Journal of Catalysis, 292, 111, 10.1016/j.jcat.2012.05.003 Turner, 2008, Direct imaging of loaded metal−organic framework materials (Metal@MOF-5), Chemistry of Materials, 20, 5622, 10.1021/cm801165s Hermes, 2005, Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angewandte Chemie International Edition, 44, 6237, 10.1002/anie.200462515 Sabo, 2007, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, Journal of Materials Chemistry, 17, 3827, 10.1039/b706432b Solla-Gullo’n, 2011, Shape dependent electrocatalysis, Annual Reports on the Progress of Chemistry Section C, 107, 263, 10.1039/c1pc90010b Mueller, 2006, Metal–organic frameworks—prospective industrial applications, Journal of Materials Chemistry, 16, 626, 10.1039/B511962F Doménech, 2007, Electrochemistry of metal−organic frameworks: a description from the voltammetry of microparticles approach, Journal of Physical Chemistry C, 111, 13701, 10.1021/jp073458x Yang, 2010, A metal–organic framework as an electrocatalyst for ethanol oxidation, Angewandte Chemie International Edition, 49, 5348, 10.1002/anie.201000863 Wen, 2010, Efficient detection of organophosphate pesticide based on a metal-organic framework derived from biphenyltetracarboxylic acid, Crystal Growth and Design, 10, 7, 10.1021/cg1004352 Babu, 2010, Electrocatalytic activity of Basolite™ F300 metal-organic-framework structures, Electrochemistry Communications, 12, 632, 10.1016/j.elecom.2010.02.017 Kobayashi, 2010, Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal-organic framework, Chemistry of Materials, 22, 4120, 10.1021/cm101238m Li, 2011, Reductive electrosynthesis of crystalline metal-organic frameworks, Journal of the American Chemical Society, 133, 12926, 10.1021/ja2041546 Barsan, 2009, A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose, Bioelectrochemistry, 76, 135, 10.1016/j.bioelechem.2009.03.004 Zen, 2003, Recent updates of chemically modified electrodes in analytical chemistry, Electroanalysis, 15, 13, 10.1002/elan.200390130 Mark, 2005, vol. 12 Zheng, 2009, Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine, Sensors and Actuators B, 135, 650, 10.1016/j.snb.2008.09.035 Salimi, 2008, Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives, Talanta, 75, 147 Abbaspour, 2009, Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles modified carbon ceramic electrode, Journal of Electroanalytical Chemistry, 631, 52, 10.1016/j.jelechem.2009.03.011 Rosca, 2008, Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions, Electrochimica Acta, 53, 5199, 10.1016/j.electacta.2008.02.054 Yi, 2009, Nanoporous gold particles modified titanium electrode for hydrazine oxidation, Journal of Electroanalytical Chemistry, 633, 159, 10.1016/j.jelechem.2009.05.008 Geraldo, 2008, Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc, Electrochimica Acta, 53, 8051, 10.1016/j.electacta.2008.05.083 Raoof, 2007, Electrocatalytic oxidation and voltammetric determination of hydrazine on the tetrabromo-p-benzoquinone modified carbon paste electrode, Electroanalysis, 19, 597, 10.1002/elan.200603760 Shen, 2009, Dendrimer-encapsulated Pd nanoparticles anchored on carbon nanotubes for electro-catalytic hydrazine oxidation, Electrochemistry Communications, 11, 1329, 10.1016/j.elecom.2009.05.005 Li, 2007, Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode, Sensors and Actuators B, 126, 527, 10.1016/j.snb.2007.03.044 Yi, 2009, Nanoporous gold particles modified titanium electrode for hydrazine oxidation, Journal of Electroanalytical Chemistry, 633, 159, 10.1016/j.jelechem.2009.05.008 Wang, 2010, Detection of hydrazine based on Nano-Au deposited on porous-TiO2 film, Electrochimica Acta, 55, 7204, 10.1016/j.electacta.2010.07.053 Zhang, 2010, Enhancement in analytical hydrazine based on gold nanoparticles deposited on ZnO-MWCNTs films, Sensors and Actuators B, 150, 247, 10.1016/j.snb.2010.07.007 Zhao, 2011, Electrocatalytic oxidation and detection of hydrazine at carbon nanotube-supported palladium nanoparticles in strong acidic solution conditions, Electrochimica Acta, 56, 4930, 10.1016/j.electacta.2011.03.014 Salimi, 2004, Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol–gel technique: application to amperometric detection of hydrazine and hydroxyl amine, Talanta, 63, 475, 10.1016/j.talanta.2003.11.021 Fang, 2009, A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochimica Acta, 55, 178, 10.1016/j.electacta.2009.08.036 Umar, 2008, Zinc oxide nanonail based chemical sensor for hydrazine detection, Chemical Communications, 2, 166, 10.1039/B711215G Zare, 2007, Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine, Electrochimica Acta, 52, 4153, 10.1016/j.electacta.2006.11.037 Zheng, 2007, Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine, Journal of Electroanalytical Chemistry, 611, 155, 10.1016/j.jelechem.2007.08.013 Hartmann, 2008, Adsorptive separation of isobutene and isobutane on Cu3(BTC)2, Langmuir, 24, 8634, 10.1021/la8008656 Grabar, 1995, Preparation and characterization of Au colloid monolayers, Analytical Chemistry, 67, 735, 10.1021/ac00100a008 Chui, 1999, A Chemically Functionalizable Nanoporous Material [Cu3 (TMA)2(H2O)3]n, Science, 283, 1148, 10.1126/science.283.5405.1148 Müeller, 2011, Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1,2): Preparation and Microstructural Characterisation, European Journal of Inorganic Chemistry, 2011, 1876, 10.1002/ejic.201001297 Kea, 2011, Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water, Journal of Hazardous Materials, 196, 36, 10.1016/j.jhazmat.2011.08.069 Wael, 2007, Electrochemical and spectroscopic characterization of a gold electrode modified with 3, 4′, 4″, 4‴ copper(II) tetrasulphonated phthalocyanine, Journal of Electroanalytical Chemistry, 603, 212, 10.1016/j.jelechem.2007.02.010 Richardson, 2001, Electrochromism in copper oxide thin films, Electrochimica Acta, 46, 2281, 10.1016/S0013-4686(01)00397-8 Xiao, 2007, Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube–gold nanoparticle–ionic liquid composite film modified glassy carbon electrodes, Analytica Chimica Acta, 596, 79, 10.1016/j.aca.2007.05.053 Mackay, 1973, Gold twin-electrodes in thin-layer electrochemistry, Analytica Chimica Acta, 67, 395, 10.1016/S0003-2670(01)80874-6 Burke, 2003, Cyclic voltammetry responses of metastable gold electrodes in aqueous media, Journal of Solid State Electrochemistry, 7, 529, 10.1007/s10008-003-0359-y Burke, 1998, The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media, Gold Bulletin, 31, 39, 10.1007/BF03214760 Thangavel, 2008, Polymer membrane stabilized gold nanostructures modified electrode and its application in nitric oxide detection, Journal of Physical Chemistry C, 112, 19825, 10.1021/jp804310u Laviron, 1980, A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction, Journal of Electroanalytical Chemistry, 112, 11, 10.1016/S0022-0728(80)80003-9 Bard, 2001 Galus, 1976