Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism

Nature Genetics - Tập 40 Số 2 - Trang 170-180 - 2008
Julián Aragonés1, Martin Schneider2,3,4, Katie Van Geyte2,4, Peter Fraisl2,4, Tom Dresselaers5, Massimiliano Mazzone2,4, Ruud Dirkx6, Serena Zacchigna2,4, Hélène Lemieux7, Nam Ho Jeoung8, Diether Lambrechts2,4, Tammie Bishop9, Peggy Lafuste2,4, Antonio Dı́ez-Juan2,4, Sarah K. Harten10, Pieter Van Noten11, Katrien De Bock11, Carsten Willam3, Marc Tjwa2,4, Alexandra Grosfeld9, Rachel Navet12, Lieve Moons2,4, Thierry VandenDriessche2,4, Christophe M. Deroose13, Bhathiya Wijeyekoon9, Johan Nuyts13, Bénédicte F. Jordan14, Robert Silasi‐Mansat15, Florea Lupu15, Mieke Dewerchin2,4, Christopher W. Pugh9, Phil Salmon16, Luc Mortelmans13, Bernard Gallez14, Frans Gorus17, Johan Buyse18, Francis Sluse12, R. Adron Harris8, Erich Gnaiger7, Peter Hespel11, Paul Van Hecke5, Frans Schuit19, Paul Van Veldhoven20, Peter J. Ratcliffe9, Myriam Baes6, Patrick H. Maxwell10, Peter Carmeliet2,4
1The Center for Transgene Technology and Gene Therapy, Katholieke Universiteit (K.U.) Leuven, Leuven, B-3000, Belgium.
2Department of Transgene Technology and Gene Therapy, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
3Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
4The Center for Transgene Technology and Gene Therapy, Katholieke Universiteit (K.U.) Leuven, Leuven, Belgium
5Biomedical MRI Unit, K.U. Leuven, Leuven, Belgium
6Laboratory of Cell Metabolism, K.U. Leuven, Leuven, Belgium
7Department of Transplant Surgery, Medical University of Innsbruck, D. Swarovski Research Laboratory, Innsbruck, Austria
8Department of Biochemistry/Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
9The Henry Wellcome Building for Molecular Physiology, Oxford, UK
10Division of Medicine, Hammersmith Campus, Imperial College London, London, UK
11Exercise and Health Laboratory, Faculty of Kinesiology and Rehabilitation Sciences, K.U. Leuven, Leuven, Belgium
12Department of Life Sciences, Laboratory of Bioenergetics and Molecular Physiology, University of Liege, Liege, Belgium
13Department of Nuclear Medicine, University Hospital, K.U. Leuven, Leuven, Belgium
14Biomedical Magnetic Resonance Unit, Medicinal Chemistry and Radiopharmacy, U.C. Louvain, Brussels, Belgium
15Cardiovascular Research Program, Oklahoma Medical Research Foundation, Oklahoma, USA
16Skyscan NV, Aartselaar, Belgium
17Diabetes Research Center, Free University of Brussels, Brussels, Belgium
18Department of Biosystems, Laboratory for Physiology, Immunology and Genetics of Domestic Animals, K.U. Leuven, Leuven, Belgium
19Department of Molecular Cell Biology, Gene Expression Unit, K.U. Leuven, Leuven, Belgium
20Department of Molecular Cell Biology, Laboratorium for Lipid Biochemistry and Protein Interactions (LIPIT), K.U. Leuven, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ramirez, J.M., Folkow, L.P. & Blix, A.S. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu. Rev. Physiol. 69, 113–143 (2007).

Andrews, M.T. Genes controlling the metabolic switch in hibernating mammals. Biochem. Soc. Trans. 32, 1021–1024 (2004).

Kim, J.W., Tchernyshyov, I., Semenza, G.L. & Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L. & Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

Sugden, M.C. & Holness, M.J. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch. Physiol. Biochem. 112, 139–149 (2006).

Bruick, R.K. & McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

Epstein, A.C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

Appelhoff, R.J. et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279, 38458–38465 (2004).

Berra, E. et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22, 4082–4090 (2003).

Elson, D.A. et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Genes Dev. 15, 2520–2532 (2001).

Willam, C. et al. Peptide blockade of HIFα degradation modulates cellular metabolism and angiogenesis. Proc. Natl. Acad. Sci. USA 99, 10423–10428 (2002).

Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

Hochachka, P.W. Mechanism and evolution of hypoxia-tolerance in humans. J. Exp. Biol. 201, 1243–1254 (1998).

Schuler, M. et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414 (2006).

Kotani, K., Peroni, O.D., Minokoshi, Y., Boss, O. & Kahn, B.B. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J. Clin. Invest. 114, 1666–1675 (2004).

Mason, S.D. et al. Loss of skeletal muscle HIF-1α results in altered exercise endurance. PLoS Biol. 2, e288 (2004).

Sloniger, M.A., Cureton, K.J., Prior, B.M. & Evans, E.M. Lower extremity muscle activation during horizontal and uphill running. J. Appl. Physiol. 83, 2073–2079 (1997).

Finck, B.N. et al. A potential link between muscle peroxisome proliferator-activated receptor-α signaling and obesity-related diabetes. Cell Metab. 1, 133–144 (2005).

Jeoung, N.H. et al. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homeostasis during starvation. Biochem. J. 397, 417–425 (2006).

Harris, R.A., Bowker-Kinley, M.M., Huang, B. & Wu, P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzyme Regul. 42, 249–259 (2002).

Zaccagnini, G. et al. p66ShcA modulates tissue response to hindlimb ischemia. Circulation 109, 2917–2923 (2004).

Bracken, C.P., Whitelaw, M.L. & Peet, D.J. The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell. Mol. Life Sci. 60, 1376–1393 (2003).

Doege, K., Heine, S., Jensen, I., Jelkmann, W. & Metzen, E. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 106, 2311–2317 (2005).

Clanton, T.L. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 102, 2379–2388 (2007).

Fiskum, G. et al. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J. Bioenerg. Biomembr. 36, 347–352 (2004).

Imai, H., Graham, D.I., Masayasu, H. & Macrae, I.M. Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia. Free Radic. Biol. Med. 34, 56–63 (2003).

Ott, M., Gogvadze, V., Orrenius, S. & Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis 12, 913–922 (2007).

Gardner, P.R. Aconitase: sensitive target and measure of superoxide. Methods Enzymol. 349, 9–23 (2002).

Wu, P., Peters, J.M. & Harris, R.A. Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor alpha. Biochem. Biophys. Res. Commun. 287, 391–396 (2001).

Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat. Genet. 35, 331–340 (2003).

Brusselmans, K. et al. Heterozygous deficiency of hypoxia-inducible factor-2α protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J. Clin. Invest. 111, 1519–1527 (2003).

Sugden, M.C. & Holness, M.J. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 284, E855–E862 (2003).

Becker, L.B., vanden Hoek, T.L., Shao, Z.H., Li, C.Q. & Schumacker, P.T. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am. J. Physiol. 277, H2240–H2246 (1999).

Magalhaes, J. et al. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J. Appl. Physiol. 99, 1247–1253 (2005).

Thomas, S. & Fell, D.A. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation. Eur. J. Biochem. 258, 956–967 (1998).

Lefebvre, P., Chinetti, G., Fruchart, J.C. & Staels, B. Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).

Haddad, G.G. Tolerance to low O2: lessons from invertebrate genetic models. Exp. Physiol. 91, 277–282 (2006).

Buck, M.J., Squire, T.L. & Andrews, M.T. Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal. Physiol. Genomics 8, 5–13 (2002).

Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

Wouters, B.G., van den Beucken, T., Magagnin, M.G., Lambin, P. & Koumenis, C. Targeting hypoxia tolerance in cancer. Drug Resist. Updat. 7, 25–40 (2004).

Balaban, R.S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

Jordan, B.F. et al. Insulin increases the sensitivity of tumors to irradiation: involvement of an increase in tumor oxygenation mediated by a nitric oxide-dependent decrease of the tumor cells oxygen consumption. Cancer Res. 62, 3555–3561 (2002).

Buyse, J. et al. Energy and protein metabolism between 3 and 6 weeks of age of male broiler chickens selected for growth rate or for improved food efficiency. Br. Poult. Sci. 39, 264–272 (1998).

Kuznetsov, A.V. et al. Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 286, H1633–H1641 (2004).

Gnaiger, E. Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. Adv. Exp. Med. Biol. 543, 39–55 (2003).

Boushel, R. et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50, 790–796 (2007).

McMahon, J.M., Signori, E., Wells, K.E., Fazio, V.M. & Wells, D.J. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase–increased expression with reduced muscle damage. Gene Ther. 8, 1264–1270 (2001).