Random forest in remote sensing: A review of applications and future directions

Mariana Belgiu1, Lucian Drăguţ2
1Department of Geoinformatics – Z_GIS, Salzburg University, Schillerstrasse 30, 5020 Salzburg, Austria
2West University of Timisoara, Department of Geography, Vasile Parvan Avenue, 300223 Timisoara, Romania

Tài liệu tham khảo

Abdel-Rahman, 2014, Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers, ISPRS J. Photogramm. Remote Sens., 88, 48, 10.1016/j.isprsjprs.2013.11.013 Adelabu, 2014, Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels, ISPRS J. Photogramm. Remote Sens., 95, 34, 10.1016/j.isprsjprs.2014.05.013 Adelabu, 2014, Spectral discrimination of insect defoliation levels in mopane woodland using hyperspectral data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 177, 10.1109/JSTARS.2013.2258329 Ahmed, 2015, Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne LiDAR, and the random forest algorithm, ISPRS J. Photogramm. Remote Sens., 101, 89, 10.1016/j.isprsjprs.2014.11.007 Bechtel, 2012, Classification of local climate zones based on multiple earth observation data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 1191, 10.1109/JSTARS.2012.2189873 Belgiu, 2014, Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery, ISPRS J. Photogramm. Remote Sens., 96, 67, 10.1016/j.isprsjprs.2014.07.002 Belgiu, 2014, Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery, ISPRS J. Photogramm. Remote Sens., 87, 205, 10.1016/j.isprsjprs.2013.11.007 Belgiu, 2014, Ontology-based classification of building types detected from airborne laser scanning data, Remote Sens., 6, 1347, 10.3390/rs6021347 Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655 Breiman, 2001, Random forest, Mach. Learn., 45 Briem, 2002, Multiple classifiers applied to multisource remote sensing data, IEEE Trans. Geosci. Remote Sens., 40, 2291, 10.1109/TGRS.2002.802476 Cavallaro, 2015, Extended self-dual attribute profiles for the classification of hyperspectral images, IEEE Geosci. Remote Sens. Lett., 12, 1690, 10.1109/LGRS.2015.2419629 Chan, 2012, An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery, Int. J. Appl. Earth Obs. Geoinf., 18, 13, 10.1016/j.jag.2012.01.002 Chan, 2008, Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery, Remote Sens. Environ., 112, 2999, 10.1016/j.rse.2008.02.011 Chehata, 2009, Airborne lidar feature selection for urban classification using random forests, Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci., 39, 207 Chen, 2014, Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China, Remote Sens. Environ., 152, 291, 10.1016/j.rse.2014.07.004 Chutia, 2015, Hyperspectral remote sensing classifications: a perspective survey, Trans. GIS Colditz, 2015, An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms, Remote Sens., 7, 9655, 10.3390/rs70809655 Corcoran, 2013, Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota, Remote Sens., 5, 3212, 10.3390/rs5073212 Dalponte, 2013, Tree species classification in boreal forests with hyperspectral data, IEEE Trans. Geosci. Remote Sens., 51, 2632, 10.1109/TGRS.2012.2216272 DeFries, 2000, Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data, Remote Sens. Environ., 74, 503, 10.1016/S0034-4257(00)00142-5 Demarchi, 2014, Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping, ISPRS J. Photogramm. Remote Sens., 87, 166, 10.1016/j.isprsjprs.2013.10.012 Deng, 2013, The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques, ISPRS J. Photogramm. Remote Sens., 86, 100, 10.1016/j.isprsjprs.2013.09.010 Díaz-Uriarte, 2006, Gene selection and classification of microarray data using random forest, BMC Bioinformatics, 7, 3, 10.1186/1471-2105-7-3 Dietterich, 2000, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Mach. Learn., 40, 139, 10.1023/A:1007607513941 Du, 2015, Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features, ISPRS J. Photogramm. Remote Sens., 105, 38, 10.1016/j.isprsjprs.2015.03.002 Fassnacht, 2014, Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central European test sites, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 2547, 10.1109/JSTARS.2014.2329390 Frazier, 2014, Characterization of aboveground biomass in an unmanaged boreal forest using landsat temporal segmentation metrics, ISPRS J. Photogramm. Remote Sens., 92, 137, 10.1016/j.isprsjprs.2014.03.003 Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504 Ghimire, 2012, An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA, GISci. Remote Sens., 49, 623, 10.2747/1548-1603.49.5.623 Ghosh, 2014, A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales, Int. J. Appl. Earth Obs. Geoinf., 26, 49, 10.1016/j.jag.2013.05.017 Ghosh, 2014, A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery, Int. J. Appl. Earth Obs. Geoinf., 26, 298, 10.1016/j.jag.2013.08.011 Gislason, 2006, Random forests for land cover classification, Pattern Recogn. Lett., 27, 294, 10.1016/j.patrec.2005.08.011 Guan, 2013, Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests, Int. J. Remote Sens., 34, 5166, 10.1080/01431161.2013.788261 Guo, 2015, Classification of airborne laser scanning data using JointBoost, ISPRS J. Photogramm. Remote Sens., 100, 71, 10.1016/j.isprsjprs.2014.04.015 Guo, 2011, Relevance of airborne lidar and multispectral image data for urban scene classification using random forests, ISPRS J. Photogramm. Remote Sens., 66, 56, 10.1016/j.isprsjprs.2010.08.007 Haas, 2014, Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta, Int. J. Appl. Earth Obs. Geoinf., 30, 42, 10.1016/j.jag.2013.12.012 Ham, 2005, Investigation of the random forest framework for classification of hyperspectral data, IEEE Trans. Geosci. Remote Sens., 43, 492, 10.1109/TGRS.2004.842481 Han, 2015, Detection of convective initiation using meteorological imager onboard communication, ocean, and meteorological satellite based on machine learning approaches, Remote Sens., 7, 9184, 10.3390/rs70709184 Holmes, G., Donkin, A., Witten, I.H., 1994. Weka: a machine learning workbench, intelligent information systems, 1994. In: Proc. of the second Australian and New Zealand Conference on Intelligent Information Systems, Brisbane, Australia, 29 November – 2 December, pp. 357–361. Jin, 2014, Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado, Int. J. Remote Sens., 35, 2067, 10.1080/01431161.2014.885152 Juel, 2015, Spatial application of random forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data, Int. J. Appl. Earth Obs. Geoinf., 42, 106, 10.1016/j.jag.2015.05.008 Junshi, 2014, Hyperspectral remote sensing image classification based on rotation forest, IEEE Geosci. Remote Sens. Lett., 11, 239, 10.1109/LGRS.2013.2254108 Junshi, 2015, Improving random forest with ensemble of features and semisupervised feature extraction, IEEE Geosci. Remote Sens. Lett., 12, 1471, 10.1109/LGRS.2015.2409112 Karlson, 2015, Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using landsat 8 and random forest, Remote Sens., 7, 10017, 10.3390/rs70810017 Körting, 2013, GeoDMA—geographic data mining analyst, Comput. Geosci., 57, 133, 10.1016/j.cageo.2013.02.007 Křížek, P., Kittler, J., Hlaváč, V., 2007. Improving stability of feature selection methods, computer analysis of images and patterns. In: Proc. of the 12th International Analysis on Computer Analysis of Images and Patters, Vienna, Austria, 27–29 August, pp. 929–936. Kulkarni, V.Y., Sinha, P.K., 2012. Pruning of random forest classifiers: a survey and future directions. In: Proc. of International Conference on Data Science Engineering (ICDSE) Cochin, Kerala, India, 18–20 July, pp. 64–68. Kuncheva, 2007, A stability index for feature selection, Artif. Int. Appl., 421 Kursa, 2010, Feature selection with the Boruta package, J. Stat. Softw., 36, 10.18637/jss.v036.i11 Lawrence, 2006, Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest), Remote Sens. Environ., 100, 356, 10.1016/j.rse.2005.10.014 Leutner, 2012, Modelling forest α-diversity and floristic composition — on the added value of LiDAR plus hyperspectral remote sensing, Remote Sens., 4, 2818, 10.3390/rs4092818 Li, 2015, Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms, Remote Sens., 7, 9705, 10.3390/rs70809705 Liu, 2011, A fuzzy topology-based maximum likelihood classification, ISPRS J. Photogramm. Remote Sens., 66, 103, 10.1016/j.isprsjprs.2010.09.007 Lu, 2007, A survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens., 28, 823, 10.1080/01431160600746456 Ma, 2015, Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery, ISPRS J. Photogramm. Remote Sens., 102, 14, 10.1016/j.isprsjprs.2014.12.026 Mansour, 2012, Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA eagle resolution, ISPRS J. Photogramm. Remote Sens., 70, 56, 10.1016/j.isprsjprs.2012.03.006 Marceau, 1994, Remote Sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem, Remote Sens. Environ., 49, 93, 10.1016/0034-4257(94)90046-9 Mas, 2007, The application of artificial neural networks to the analysis of remotely sensed data, Int. J. Remote Sens., 29, 617, 10.1080/01431160701352154 Mellor, 2015, Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin, ISPRS J. Photogramm. Remote Sens., 105, 155, 10.1016/j.isprsjprs.2015.03.014 Menze, B.H., Kelm, B.M., Splitthoff, D.N., Koethe, U., Hamprecht, F.A., 2011. On oblique random forests. In: Proc. of the European Conference Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5–9 September, pp. 453–469. Miao, 2012, Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data, Int. J. Remote Sens., 33, 1823, 10.1080/01431161.2011.602651 Millard, 2015, On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping, Remote Sens., 7, 8489, 10.3390/rs70708489 Mishra, 2014, Mapping vegetation morphology types in a dry savanna ecosystem: integrating hierarchical object-based image analysis with random forest, Int. J. Remote Sens., 35, 1175, 10.1080/01431161.2013.876120 Mountrakis, 2011, Support vector machines in remote sensing: a review, ISPRS J. Photogramm. Remote Sens., 66, 247, 10.1016/j.isprsjprs.2010.11.001 Naidoo, 2012, Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment, ISPRS J. Photogramm. Remote Sens., 69, 167, 10.1016/j.isprsjprs.2012.03.005 Niemeyer, 2014, Contextual classification of lidar data and building object detection in urban areas, ISPRS J. Photogramm. Remote Sens., 87, 152, 10.1016/j.isprsjprs.2013.11.001 Nitze, 2015, Temporal optimisation of image acquisition for land cover classification with random forest and MODIS time-series, Int. J. Appl. Earth Obs. Geoinf., 34, 136, 10.1016/j.jag.2014.08.001 Pal, 2005, Random forest classifier for remote sensing classification, Int. J. Remote Sens., 26, 217, 10.1080/01431160412331269698 Pedergnana, 2013, A novel technique for optimal feature selection in attribute profiles based on genetic algorithms, IEEE Trans. Geosci. Remote Sens., 51, 3514, 10.1109/TGRS.2012.2224874 Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825 Peerbhay, 2015, Random forests unsupervised classification: the detection and mapping of solanum mauritianum infestations in plantation forestry using hyperspectral data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 3107, 10.1109/JSTARS.2015.2396577 R-Development-Core-Team, 2005. R: A Language and Environment for Statistical Computing. ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria, 2013. <http://www.r-project.org/>. Räsänen, 2013, What makes segmentation good? A case study in boreal forest habitat mapping, Int. J. Remote Sens., 34, 8603, 10.1080/01431161.2013.845318 Reese, 2014, Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation, Int. J. Appl. Earth Obs. Geoinf., 27, 81, 10.1016/j.jag.2013.05.003 Rodriguez-Galiano, 2012, An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67, 93, 10.1016/j.isprsjprs.2011.11.002 Rodriguez, 2006, Rotation forest: a new classifier ensemble method, IEEE Trans. Pattern Anal. Mach. Int., 28, 1619, 10.1109/TPAMI.2006.211 Saeys, 2007, A review of feature selection techniques in bioinformatics, Bioinformatics, 23, 2507, 10.1093/bioinformatics/btm344 Schapire, 1990, The strength of weak learnability, Mach. Learn., 5, 197, 10.1007/BF00116037 Schmidt, 2014, Contextual classification of full waveform lidar data in the Wadden Sea, IEEE Geosci. Remote Sens. Lett., 11, 1614, 10.1109/LGRS.2014.2302317 Schwarz, 2010, On safari to random jungle: a fast implementation of random forests for high-dimensional data, Bioinformatics, 26, 1752, 10.1093/bioinformatics/btq257 Sesnie, 2010, The multispectral separability of Costa Rican rainforest types with support vector machines and random forest decision trees, Int. J. Remote Sens., 31, 2885, 10.1080/01431160903140803 Shang, 2014, Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 2481, 10.1109/JSTARS.2013.2282166 Shao, 2015, An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data, Int. J. Appl. Earth Obs. Geoinf., 38, 78, 10.1016/j.jag.2014.12.017 Stefanski, 2013, Optimization of object-based image analysis with random forests for land cover mapping, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 2492, 10.1109/JSTARS.2013.2253089 Stumpf, 2011, Object-oriented mapping of landslides using random forests, Remote Sens. Environ., 115, 2564, 10.1016/j.rse.2011.05.013 Sun, 2015, The improvement of land cover classification by thermal remote sensing, Remote Sens., 7, 8368, 10.3390/rs70708368 Thenkabail, 2013, Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 427, 10.1109/JSTARS.2013.2252601 Topouzelis, 2012, Oil spill feature selection and classification using decision tree forest on SAR image data, ISPRS J. Photogramm. Remote Sens., 68, 135, 10.1016/j.isprsjprs.2012.01.005 Touw, 2012, Data mining in the life sciences with random forest: a walk in the park or lost in the jungle?, Briefings Bioinform. Trimble, 2013. eCognition Developer 8.7.2. Reference Book, München. Tsutsumida, 2015, Measures of spatio-temporal accuracy for time series land cover data, Int. J. Appl. Earth Obs. Geoinf., 41, 46, 10.1016/j.jag.2015.04.018 Uhlmann, 2014, Integrating color features in polarimetric SAR image classification, IEEE Trans. Geosci. Remote Sens., 52, 2197, 10.1109/TGRS.2013.2258675 Vetrivel, 2015, Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images, ISPRS J. Photogramm. Remote Sens., 105, 61, 10.1016/j.isprsjprs.2015.03.016 Wang, 2015, Mapping Robinia pseudoacacia forest health conditions by using combined spectral, spatial, and textural information extracted from IKONOS imagery and random forest classifier, Remote Sens., 7, 9020, 10.3390/rs70709020 Waske, 2009, Classifier ensembles for land cover mapping using multitemporal SAR imagery, ISPRS J. Photogramm. Remote Sens., 64, 450, 10.1016/j.isprsjprs.2009.01.003 Waske, 2012, ImageRF – a user-oriented implementation for remote sensing image analysis with random forests, Environ. Modell. Softw., 35, 192, 10.1016/j.envsoft.2012.01.014 Weinmann, 2015, Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers, ISPRS J. Photogramm. Remote Sens., 105, 286, 10.1016/j.isprsjprs.2015.01.016 Woodcock, 1988, The use of variograms in remote sensing: I. Scene models and simulated images, Remote Sens. Environ., 25, 323, 10.1016/0034-4257(88)90108-3 Zhang, 2014, Combining hyperspectral and LiDAR data for vegetation mapping in the Florida Everglades, Photogramm. Eng. Remote Sens., 80, 733, 10.14358/PERS.80.8.733 Zhang, 2009, Willows: a memory efficient tree and forest construction package, BMC Bioinformatics, 10, 130, 10.1186/1471-2105-10-130 Zhang, 2014, Random forests with ensemble of feature spaces, Pattern Recogn., 47, 3429, 10.1016/j.patcog.2014.04.001 Zhong, 2014, Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery, Remote Sens. Environ., 140, 1, 10.1016/j.rse.2013.08.023 Xu, 2014, A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery, Remote Sens. Environ., 141, 14, 10.1016/j.rse.2013.10.012