Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation
Tóm tắt
Inspired by the hydrophobic waxy layer structure on the back of the desert beetle, a super-hydrophobic material was prepared via the sol–gel silanisation of porous cellulose membrane (CM) using triethoxysilanes with different carbon chain lengths (R-siloxane) and (CH3CH2O)4Ti as a catalyst in 3 min. The R-siloxane CM was both super-hydrophobic and oleophilic (water contact angle (CA) > 150°, dodecane CA ≈ 0°) and resisted liquids with surface tensions as low as 15 mN·m−1, correlated with the length of the R-siloxane and roughness of the CM. Instructed by the water collection behavior of the desert beetle, a pristine filter CM was added on the R-siloxane filter CM to accelerate separation of Span 80–stabilised water-in-oil emulsions by generating a surface energy gradient (SEG). The composite membrane with SEG separated the emulsions with higher surfactant concentrations and provided a higher efficiency up to 99.98% compared with single-layer R-siloxane membrane. This bio-inspired catalytic one-step approach for preparing R-siloxane cellulose composite membranes can potentially replace petroleum-based products for oil purification. Bio-inspired preparation of R-siloxane composite cellulose membrane with surface energy gradient for highly efficient water-in-oil emulsion separation.
Tài liệu tham khảo
Feig VR, Tran H, Bao Z (2018) Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 4:337–348. https://doi.org/10.1021/acscentsci.7b00595
Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013
Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for bio-medical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020
Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. https://doi.org/10.1039/D1GC02841C
An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crops Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009
Xu R, Du H, Liu C, Liu H, Wu M, Zhang X, Si C, Li B (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834. https://doi.org/10.1016/j.jclepro.2021.127834
Chen C, Chen L, Chen S, Yu Y, Weng D, Mahmood A, Wang G, Wang J (2020) Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions. J Membr Sci 602:117976. https://doi.org/10.1016/j.memsci.2020.117976
Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-022-00425-2
Salamatov V (2020) Study of the filtering properties of fabrics derived from cotton and synthetic fibres. Proceedings of Universities. Applied Chemistry and Biotechnology 10:325–331. https://doi.org/10.21285/2227-2925-2020-10-2-325-331
Blauvelt DG, Abada EN, Oishi P, Roy S (2021) Advances in extracorporeal membrane oxygenator design for artificial placenta technology. Artif Organs 45:205–221. https://doi.org/10.1111/aor.13827
Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368
Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Advanced Composites and Hybrid Materials 4:865–884. https://doi.org/10.1007/s42114-021-00312-2
Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817
Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425
Liu K, Du H, Zheng T, Liu H, Zhang M, Xie H, Zhang X, Ma M, Si C (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740
Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2022) Cellulose nanomaterials for oil exploration applications. Polym Rev. https://doi.org/10.1080/15583724.2021.2007121
Du H, Zhang M, Liu K, Parit M, Jiang Z, Zhang X, Li B, Si C (2022) Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994. https://doi.org/10.1016/j.cej.2021.131994
Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T, Zhang X, Si C (2021) Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl Mater Interfaces 13(27):32115–32125. https://doi.org/10.1021/acsami.1c06647
Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T, Zhang X, Si C (2021) Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohyd Polym 270:118372. https://doi.org/10.1016/j.carbpol.2021.118372
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Letters 14:104. https://doi.org/10.1007/s40820-022-00849-x
Chakrabarti U, Paoli R, Chatterjee S, Megaridis CM (2019) Importance of body stance in fog droplet collection by the Namib desert beetle. Biomimetics 4:59. https://doi.org/10.3390/biomimetics4030059
Zhu H, Huang Y, Lou X, Xia F (2019) Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano 6:100034. https://doi.org/10.1016/j.mtnano.2019.100034
Mitchell D, Henschel JR, Hetem RS, Wassenaar TD, Strauss WM, Hanrahan SA, Seely MK (2020) Fog and fauna of the Namib Desert: past and future. Ecosphere 11:2996. https://doi.org/10.1002/ecs2.2996
Xu C, Feng R, Song F, Wang X-L, Wang Y-Z (2018) Desert beetle-inspired superhydrophilic/superhydrophobic patterned cellulose film with efficient water collection and antibacterial performance. ACS Sustainable Chemistry & Engineering 6:14679–14684. https://doi.org/10.1021/acssuschemeng.8b03247
Lee JJ, Kim D-Y (2019) Investigation of morphology and surface structure of Stenocara eburnea, Namib desert beetle. Microsc Microanal 25:1096–1097. https://doi.org/10.1017/S1431927619006214
Lamb T (2018) A fatal agonistic interaction between ant and darkling beetle (Coleoptera: Tenebrionidae: Pimeliinae: Adesmiini) in the Northern Namib Desert. Coleopt Bull 72:314–316. https://doi.org/10.1649/0010-065X-72.2.314
Yu Z, Yun FF, Wang Y, Yao L, Dou S, Liu K, Jiang L, Wang X (2017) Desert beetle-inspired superwettable patterned surfaces for water harvesting. Small 13:1701403. https://doi.org/10.1002/smll.201701403
Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 2113082. https://doi.org/10.1002/adfm.202113082
Liu W, Du H, Liu H, Xie H, Xu T, Zhao X, Liu Y, Zhang X, Si C (2020) Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustainable Chemistry & Engineering 8:16691–16700. https://doi.org/10.1021/acssuschemeng.0c06561
Li X, Lu X, Nie S, Wang M, Yu Z, Duan B, Yang J, Xu R, Lu L, Si C (2020) Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. I Industrial Crops and Products 145:112154. https://doi.org/10.1016/j.indcrop.2020.112154
Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crops Prod 130:184–197. https://doi.org/10.1016/j.indcrop.2018.12.082
Scola V, Ramond J-B, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, Seely M, Cowan DA (2018) Namib Desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Microb Ecol 75:193–203. https://doi.org/10.1007/s00248-017-1009-8
Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-022-00427-0
Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustainable Chemistry & Engineering 8:7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125
Liu W, Du H, Liu K, Liu H, Xie H, Si C, Pang B, Zhang X (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohyd Polym 267:118220. https://doi.org/10.1016/j.carbpol.2021.118220
Wang H, Du H, Liu K, Liu H, Xu T, Zhang S, Chen X, Zhang R, Li H, Xie H, Zhang X, Si C (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohyd Polym 266:118107. https://doi.org/10.1016/j.carbpol.2021.118107
Wang H, Xie H, Du H, Wang X, Liu W, Duan Y, Zhang X, Sun L, Si ZXYC (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohyd Polym 239:116233. https://doi.org/10.1016/j.carbpol.2020.116233
Gurera D, Bhushan B (2020) Passive water harvesting by desert plants and animals: lessons from nature. Phil Trans R Soc A 378:20190444. https://doi.org/10.1098/rsta.2019.0444
Basu B, Srinivasan A, Manasa J, Grips V (2012) Improved corrosion protection of aluminium alloy AA 2024 by sol–gel hybrid coatings after surface pretreatment by silanisation. Surf Eng 28:294–299. https://doi.org/10.1179/1743294411Y.0000000074
Liu X, Sun S, Nie R, Ma J, Qu Q, Yang L (2018) Highly uniform porous silica layer open-tubular capillary columns produced via in-situ biphasic sol–gel processing for open-tubular capillary electrochromatography. J Chromatogr A 1538:86–93. https://doi.org/10.1016/j.chroma.2018.01.024
Rahim T, Mohamad D, Ismail AR, Akil HM (2011) Synthesis of nanosilica fillers for experimental dental nanocomposites and their characterisations. Journal of Physical Science 22:93–105. https://doi.org/10.1021/jphyssci.6b07182
Das C, Bansod ND, Kapgate BP, Reuter U, Heinrich G, Das A (2017) Development of highly reinforced acrylonitrile butadiene rubber composites via controlled loading of sol-gel titania. Polymer 109:25–37. https://doi.org/10.1016/j.polymer.2016.12.018
Huang X, Ke R, Dong Y (2020) Characterization and corrosion protection of nano-titanium dioxide doped BTSE-GPTMS sol–gel coating on cast Al–Si alloy. J Sol-Gel Sci Technol 94:671–680. https://doi.org/10.1007/s10971-019-05211-z
Pinto R, Carmezim M, Ferreira M, Montemor M (2010) A two-step surface treatment, combining anodisation and silanisation, for improved corrosion protection of the Mg alloy WE54. Prog Org Coat 69:143–149. https://doi.org/10.1016/j.porgcoat.2010.04.014
Li J, Xu C, Guo C, Tian H, Zha F, Guo L (2018) Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux. Journal of Materials Chemistry A 6:223–230. https://doi.org/10.1039/c7ta08076j
Yin X, Wang Z, Shen Y, Mu P, Zhu G, Li J (2020) Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions. Sep Purif Technol 230:115856. https://doi.org/10.1016/j.seppur.2019.115856
Khorsand S, Raeissi K, Ashrafizadeh F, Arenas M, Conde A (2016) Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy film. Appl Surf Sci 364:349–357. https://doi.org/10.1016/j.apsusc.2015.12.122
Liu Y, Chen X, Xin JH (2006) Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach. Nanotechnology 17:3259. https://doi.org/10.1088/0957-4484
Qu Z, Wang F, Liu P, Yu Q, Brouwers H (2020) Super-hydrophobic magnesium oxychloride cement (MOC): from structural control to self-cleaning property evaluation. Mater Struct 53:1–10. https://doi.org/10.1617/s11527-020-01462-3
Guo P, Wang Z, Han X, Heng L (2021) Nepenthes pitcher inspired isotropic/anisotropic polymer solid–liquid composite interface: preparation, function, and application. Mater Chem Front 5:1716–1742. https://doi.org/10.1039/d0qm00805b
Lei J, Guo Z (2020) A fog-collecting surface mimicking the Namib beetle: its water collection efficiency and influencing factors. Nanoscale 12:6921–6936. https://doi.org/10.1039/c9nr10808d
Yong J, Chen F, Yang Q, Fang Y, Huo J, Zhang J, Hou X (2017) Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing. Adv Mater Interfaces 4:1700552. https://doi.org/10.1002/admi.201700552
Zhu H, Duan R, Wang X, Yang J, Wang J, Huang Y, Xia F (2018) Prewetting dichloromethane induced aqueous solution adhered on Cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by Namib Desert beetles and mussels. Nanoscale 10:13045–13054. https://doi.org/10.1039/c8nr03277g
Zembyla M, Murray BS, Sarkar A (2020) Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends Food Sci Technol 104:49–59. https://doi.org/10.1016/j.tifs.2020.07.028
Lin Y-J, Perrard A, Biswal SL, Hill RM, Trabelsi S (2018) Microfluidic investigation of asphaltenes-stabilized water-in-oil emulsions. Energy Fuels 32:4903–4910. https://doi.org/10.1021/acs.energyfuels.8b00249
Gao Y, Guo M, Yuan K, Shen C, Ren Z, Zhang K, Zhao H, Qiao F, Gu J, Qi Y (2020) Multifunctional silanization interface for high-energy and low-gassing lithium metal pouch cells. Adv Energy Mater 10:1903362. https://doi.org/10.1002/aenm.201903362
Wu G, Chen L, Liu L (2017) Effects of silanization and silica enrichment of carbon fibers on interfacial properties of methylphenylsilicone resin composites. Compos A Appl Sci Manuf 98:159–165. https://doi.org/10.1016/j.compositesa.2017.03.024
Frka-Petesic B, Vignolini S (2019) So much more than paper. Nat Photonics 13:365–367. https://doi.org/10.1038/s41566-019-0448-9
Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5:3819–3831. https://doi.org/10.1039/c6ta04844g
Hu H, Hua T (2017) An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J Mater Chem A 5:19639–19648. https://doi.org/10.1039/C7TA04735E
Tuteja A, Choi W, Mabry JM, Mckinley GH, Cohen RE (2008) Robust omniphobic surfaces. Proc Natl Acad Sci 105:18200–18205. https://doi.org/10.1073/pnas.0804872105
Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RM, Lange H, Thuo MM, Whitesides GM (2014) Omniphobic “RF paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv Func Mater 24:60–70. https://doi.org/10.1002/adfm.201300780
Zhang P, Zhang L, Chen H, Dong Z, Zhang D (2017) Surfaces inspired by the Nepenthes peristome for unidirectional liquid transport. Adv Mater 29:1702995. https://doi.org/10.1002/adma.201702995
Li Q, Song Y, Xu R, Zhang L, Gao J, Xia Z, Tian Z, Wei N, RüMmeli MH, Zou X (2018) Biotemplating growth of Nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano 12:10240–10250. https://doi.org/10.1021/acsnano.8b05246
Li Z, Liu J, Jiang K, Thundat T (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–169. https://doi.org/10.1016/j.nanoen.2016.04.036
Park JK, Kim S (2019) Three-dimensionally structured flexible fog harvesting surfaces inspired by Namib desert beetles. Micromachines 10:201. https://doi.org/10.3390/mi10030201
Nanev CN, Saridakis E, Govada L, Kassen SC, Solomon HV, Chayen NE (2019) Hydrophobic interface-assisted protein crystallization: theory and experiment. ACS Appl Mater Interfaces 11:12931–12940. https://doi.org/10.1021/acsami.8b20995
Tyson W, Miller W (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62:267–276. https://doi.org/10.1016/0039-6028(77)90442-3
Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on− CF3 alignment. Langmuir 15:4321–4323. https://doi.org/10.1021/acs.langmuir.6b01922
Park B-G, Park I-J, Han J-S, Lee S-M, Lee C-G, Ha C-S (2013) Characterization of optical properties in water-in-oil emulsion. J Dispersion Sci Technol 34:560–565. https://doi.org/10.1080/01932691.2012.680833
Long M, Peng S, Deng W, Miao X, Wen N, Zhou Q, Deng W (2018) Highly efficient separation of surfactant stabilized water-in-oil emulsion based on surface energy gradient and flame retardancy. J Colloid Interface Sci 520:1–10. https://doi.org/10.1016/j.jcis.2018.02.061