Efficient Synthesis of Heteroatom (N or S)‐Doped Graphene Based on Ultrathin Graphene Oxide‐Porous Silica Sheets for Oxygen Reduction Reactions

Advanced Functional Materials - Tập 22 Số 17 - Trang 3634-3640 - 2012
Shubin Yang1, Linjie Zhi2, Kun Tang3,4,5,6, Xinliang Feng3,4,1,7,6, Joachim Maier5, Kläus Müllen3,4,1,6
1Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Germany
2National Center for Nanoscience and Technology of China, Beiyitiao 11, 100190, China
3Klaus Müllen, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Germany.
4Kun Tang, Max Planck Institute for Solid State Research, Heisenberg Str. 1, 70569, Germany
5Max Planck Institute for Solid State Research, Heisenberg Str. 1, 70569, Germany
6Xinliang Feng, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Germany.
7School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

Tóm tắt

AbstractHeteroatom (N or S)‐doped graphene with high surface area is successfully synthesized via thermal reaction between graphene oxide and guest gases (NH3 or H2S) on the basis of ultrathin graphene oxide‐porous silica sheets at high temperatures. It is found that both N and S‐doping can occur at annealing temperatures from 500 to 1000 °C to form the different binding configurations at the edges or on the planes of the graphene, such as pyridinic‐N, pyrrolic‐N, and graphitic‐N for N‐doped graphene, thiophene‐like S, and oxidized S for S‐doped graphene. Moreover, the resulting N and S‐doped graphene sheets exhibit good electrocatalytic activity, long durability, and high selectivity when they are employed as metal‐free catalysts for oxygen reduction reactions. This approach may provide an efficient platform for the synthesis of a series of heteroatom‐doped graphenes for different applications.

Từ khóa


Tài liệu tham khảo

10.1126/science.1137201

10.1039/b920539j

10.1126/science.1157996

10.1126/science.1150878

10.1021/ja805090z

10.1021/nl802558y

10.1021/nl802484w

10.1002/anie.201003485

10.1002/anie.201001634

10.1002/cssc.200900106

10.1002/cphc.200800592

10.1103/PhysRevLett.98.146801

Huang S. F., 2009, Phys. Rev. B, 80

10.1021/nn200879h

10.1021/nn901850u

10.1021/nl803279t

10.1016/j.carbon.2009.09.013

10.1021/ja907098f

10.1021/ja01539a017

10.1021/cm801356a

10.1038/nnano.2007.451

10.1038/nchem.281

10.1021/nl802558y

10.1016/j.carbon.2007.02.034

10.1016/j.elecom.2010.05.023

10.1002/adma.200902795

10.1002/anie.200907289

10.1021/nn100315s

10.1021/cm100139d

10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.0.CO;2-B

10.1149/1.3185852

10.1021/ef00046a011

10.1021/la803538z

10.1126/science.1168049

10.1021/ja104425h

10.1021/ja300038p

10.1021/ja105617z