Elliptic curves on spinor varieties

Central European Journal of Mathematics - Tập 10 - Trang 1393-1406 - 2012
Nicolas Perrin1,2
1Hausdorff Center for Mathematics, Universität Bonn, Bonn, Germany
2Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Case 247, Paris Cedex 05, France

Tóm tắt

We prove irreducibility of the scheme of morphisms, of degree large enough, from a smooth elliptic curve to spinor varieties. We give an explicit bound on the degree.

Tài liệu tham khảo

Atiyah M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc., 1957, 7, 414–452 Ballico E., On the Hilbert scheme of curves in a smooth quadric, In: Deformations of Mathematical Structures, Łódz/Lublin, 1985/87, Kluwer, Dordrecht, 1989, 127–132 Bourbaki N., Éléments de Mathématique. XXVI. Groupes et Algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind., 1285, Hermann, Paris, 1960 Brion M., Kumar S., Frobenius Splitting Methods in Geometry and Representation Theory, Progr. Math., 231, Birkhäuser, Boston, 2005 Bruguières A., The scheme of morphisms from an elliptic curve to a Grassmannian, Compositio Math., 1987, 63(1), 15–40 Chaput P.E., Manivel L., Perrin N., Quantum cohomology of minuscule homogeneous spaces, Transform. Groups, 2008, 13(1), 47–89 Demazure M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 1974, 7(1), 53–88 Iliev A., Markushevich D., Parametrization of sing Θ for a Fano 3-fold of genus 7 by moduli of vector bundles, Asian J. Math., 2007, 11(3), 427–458 Kleiman S.L., The transversality of a general translate, Compositio Math., 1974, 28, 287–297 Magyar P., Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv., 1998, 73(4), 603–636 Pasquier B., Perrin N., Elliptic curves on some homogeneous spaces, preprint available at http://arxiv.org/abs/1105.5320 Perrin N., Courbes rationnelles sur les variétés homogènes, Ann. Inst. Fourier (Grenoble), 2002, 52(1), 105–132 Perrin N., Rational curves on minuscule Schubert varieties, J. Algebra, 2005, 294(2), 431–462 Perrin N., Small resolutions of minuscule Schubert varieties, Compos. Math., 2007, 143(5), 1255–1312 Stembridge J.R., Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc., 1997, 349(4), 1285–1332