Do the acid/base modifiers in solvothermal synthetic conditions influence the formation of Zr-Tyr MOFs to be amorphous?
Tài liệu tham khảo
Morris, 2008, Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks, J. Am. Chem. Soc., 130, 12626, 10.1021/ja805222x
O'Keeffe, 2010, New microporous crystalline materials: Mofs, Cofs, and Zifs, Am Crystallogr. Assoc. Annu. Meet.
Huskić, 2016, Minerals with metal-organic framework structures, Sci. Adv.., 2, 10.1126/sciadv.1600621
Wang, 2010, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156, 11, 10.1016/j.cej.2009.10.029
Oh, 2019, Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF, IUCrJ, 6, 681, 10.1107/S2052252519007760
Ashworth, 2018, Metal-organic framework nanosheets (MONs): a new dimension in materials chemistry, J. Mater. Chem. A, 6, 16292, 10.1039/C8TA03159B
Paz, 2012, Ligand design for functional metalxs–organic frameworks, Chem. Soc. Rev., 41, 1088, 10.1039/C1CS15055C
Ruan, 2018, Effect of transition metal ions on luminescence of MOFs, MATEC Web Conf., 238, 1, 10.1051/matecconf/201823805004
Horcajada, 2012, Metal–organic frameworks in biomedicine, Chem. Rev., 112, 1232, 10.1021/cr200256v
Mehjabeen, 2018, Zirconium alloys for orthopaedic and dental applications, Adv. Eng. Mater., 20, 10.1002/adem.201800207
Ahmadi, 2021, An investigation of affecting factors on MOF characteristics for biomedical applications: a systematic review, Heliyon, 7, e06914, 10.1016/j.heliyon.2021.e06914
Vaidhyanathan, 2006, A family of nanoporous materials based on an amino acid backbone, Angew. Chem. - Int. Ed., 45, 6495, 10.1002/anie.200602242
Thirupathi, 2012, L-tyrosine as an eco-friendly and efficient catalyst for knoevenagel condensation of arylaldehydes with meldrum's acid in solvent-free condition under grindstone method, Org. Chem. Int., 2012, 1, 10.1155/2012/191584
Zhou, 2012, Co II/Zn II-(L-tyrosine) magnetic metal-organic frameworks, Eur. J. Inorg. Chem., 5259, 10.1002/ejic.201200169
Padial, 2013, Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds, Angew. Chem. - Int. Ed., 52, 8290, 10.1002/anie.201303484
Serre, 2007, Role of solvent-host interactions that lead to very large swelling of hybrid frameworks, Science, 315, 1828, 10.1126/science.1137975
Singh, 2017, Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects, Mater. Sci. Eng. C, 72, 590, 10.1016/j.msec.2016.11.117
Lv, 2019, Ligand rigidification for enhancing the stability of metal-organic frameworks, J. Am. Chem. Soc., 141, 10283, 10.1021/jacs.9b02947
Shinitzky, 2002, Unexpected differences between D- and L- tyrosine lead to chiral enhancement in racemic mixtures, Orig. Life Evol. Biosph., 32, 285, 10.1023/A:1020535415283
Rowsell, 2004, Metal-organic frameworks: a new class of porous materials, Microporous Mesoporous Mater., 73, 3, 10.1016/j.micromeso.2004.03.034
Hou, 2018, Green synthesis and evaluation of an iron-based metal-organic framework MIL-88B for efficient decontamination of arsenate from water, Dalton Trans., 47, 2222, 10.1039/C7DT03775A
Mohammadi Nilash, 2019, Novel Schiff base-functionalized metal-organic framework nanoparticles for dispersive solid phase extraction of copper ions from vegetable and water samples, Anal. Methods, 11, 2683, 10.1039/C9AY00304E
Hu, 2016, A pH-responsive phase transformation of a sulfonated metal-organic framework from amorphous to crystalline for efficient CO2 capture, CrystEngComm, 18, 2803, 10.1039/C6CE00369A
Fonseca, 2021, Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses, J. Mater. Chem. A, 9, 10562, 10.1039/D1TA01043C
Gutov, 2016, Modulation by amino acids: toward superior control in the synthesis of zirconium metal–organic frameworks, Chem. - A Eur. J., 22, 13582, 10.1002/chem.201600898
Goesten, 2014, Molecular promoting of aluminum metal-organic framework topology MIL-101 by N, N-dimethylformamide, Inorg. Chem., 53, 882, 10.1021/ic402198a
Wang, 2018, A robust zirconium amino acid metal-organic framework for proton conduction, Nat. Commun., 9, 1, 10.1038/s41467-018-07414-4
De, 2015, Improving the mechanical stability of zirconium-based metal-organic frameworks by incorporation of acidic modulators, J. Mater. Chem. A, 3, 1737, 10.1039/C4TA06396A
Chen, 2010, Synthesis and characterization of the interpenetrated MOF-5, J. Mater. Chem., 20, 3758, 10.1039/b922528e
Bennett, 2014, Amorphous metal-organic frameworks, Acc. Chem. Res., 47, 1555, 10.1021/ar5000314
Bennett, 2014, Amorphous metal-organic frameworks: structure, properties and application, Acta Crystallogr. Sect. A Found. Adv.., 70, C1470, 10.1107/S2053273314085295
Bennett, 2010, Structure and properties of an amorphous metal-organic framework, Phys. Rev. Lett., 104, 2, 10.1103/PhysRevLett.104.115503
Bennett, 2011, Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks, J. Am. Chem. Soc., 133, 14546, 10.1021/ja206082s
Lin, 2007, Surface roughness and light transmission of biaxially oriented polypropylene films, Polym. Eng. Sci., 47, 1658, 10.1002/pen.20850
Wang, 2016, Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis, Sci. Rep., 6, 35020, 10.1038/srep35020
Sigwadi, 2016, Synthesis of zirconia-based solid acid nanoparticles for fuel cell application, J. Energy S. Afr., 27, 60, 10.17159/2413-3051/2016/v27i2a1342
Orellana-Tavra, 2015, Amorphous metal-organic frameworks for drug delivery, Chem. Commun., 51, 13878, 10.1039/C5CC05237H
Qiao, 2017, 389
Azarifar, 2017, A multifunctional zirconium-based metal–organic framework for the one-pot tandem photooxidative passerini three-component reaction of alcohols, ChemCatChem, 9, 1992, 10.1002/cctc.201700169
Xuan, 2012, Mesoporous metal–organic framework materials, Chem. Soc. Rev., 41, 1677, 10.1039/C1CS15196G
Zhang, 2016, The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China, J. Nat. Gas Geosci.., 1, 213, 10.1016/j.jnggs.2016.08.002
Singal, 2002, 1, 10