Comparison of the acute phase protein and antioxidant responses in dogs vaccinated against canine monocytic ehrlichiosis and naive-challenged dogs

Parasites and Vectors - Tập 8 - Trang 1-10 - 2015
Nir Rudoler1, Shimon Harrus1, Silvia Martinez-Subiela2, Asta Tvarijonaviciute2, Michael van Straten1, Jose J Cerón2, Gad Baneth1
1Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
2Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, Spain

Tóm tắt

Canine monocytic ehrlichiosis (CME) is a tick-borne disease with a global distribution, caused by Ehrlichia canis. The inflammatory response to E. canis infection includes changes in certain acute phase proteins (APP) and in biomarkers of the oxidative status. APP responses are considered part of the innate immune response to CME. The aim of this study was to evaluate the APP and oxidative marker responses in dogs vaccinated against CME with an attenuated vaccine and subsequently challenged with a wild E. canis strain. The study included 3 groups of 4 beagle dogs. Group 1 dogs were inoculated subcutaneously with an attenuated E. canis vaccine on day 0, and again on day 213. Group 2 initially served as controls for group 1 during the vaccination phase and then vaccinated once on day 213. Group 3 consisted of naïve dogs which constituted the control group for the challenge phase. All 12 dogs were infected intravenously with a wild strain of E. canis on day 428 of the study. APP levels were serially measured during two periods: days 0–38 post-vaccination (groups 1 and 2) and days 0–39 post-challenge (groups 1, 2, 3). Changes in C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin, albumin, paraoxonase-1 (PON-1) and total antioxidant capacity (TAC) were of significantly smaller magnitude in vaccinated dogs and appeared later on a time scale compared to unvaccinated dogs challenged with a wild strain. Alterations in the level of APP during the vaccination phase of the study were of lower extent compared to those in the challenged unvaccinated dogs during the post-challenge phase. Positive APP levels correlated positively with the rickettsial load, body temperature and negatively with the thrombocyte counts (p < 0.05). Vaccination with an attenuated E. canis strain and challenge with a wild strain resulted in considerably reduced responses of positive and negative APP, and oxidative biomarker responses in vaccinated compared to unvaccinated dogs, reflecting a milder innate inflammatory response conferred by protection of the vaccine.

Tài liệu tham khảo

Harrus S, Waner T. Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): an overview. Vet J. 2011;187:292–6. Harrus S, Waner T, Neer TM. Ehrlichia canis infection. In: Greene CE, editor. Infectious diseases of the dog and the cat. 4th ed. St. Louis: Elsevier; 2011. p. 227–38. Mylonakis ME, Ceron JJ, Leontides L, Siarkou VI, Tvarijonaviciute A, Koutinas AF, et al. Serum acute phase proteins as clinical phase indicators and outcome predictors in naturally occurring canine monocytic ehrlichiosis. J Vet Intern Med. 2011;25:811–7. Rikihisa Y, Yamamoto S, Kwak I, Igbal Z, Kociba G, Mott J, et al. C-reactive protein and alpha-1 acid glycoprotein levels in dogs infected with Ehrlichia canis. J Clin Microbiol. 1994;32:912–7. Munhoz TD, Faria JL, Vargas-Hernandez G, Fagliari JJ, Santana AE, Machado RZ, et al. Experimental Ehrlichia canis infection changes acute-phase proteins. Rev Bras Parasitol Vet. 2012;21:206–12. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448–54. Murata H, Shimada N, Yoshioka M. Current research on acute phase proteins in veterinary diagnosis: an overview. Vet J. 2004;168:28–40. Mold C, Rodriguez W, Rodic-Polic B. Du-Clos TW: C-reactive protein mediates protection from lipopolysaccharide through interactions with Fc gamma R. J Immunol. 2002;169:7019–25. Levy AP, Asleh R, Blum S, Levy NS, Miller-Lotan R, Kalet-Litman S, et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010;12:293–304. Urieli-Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol. 2000;7:64–9. Cray C, Zaias J, Altman AH. Acute phase response in animals a review. Comp Med. 2009;59:517–26. Ferrari CK. Effects of xenobiotics on total antioxidant capacity. Interdiscip Toxicol. 2012;5:117–22. Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST. The paraoxonase gene family and atherosclerosis. Free Radic Biol Med. 2005;38:153–63. Rudoler N, Baneth G, Eyal O, van Straten M, Harrus S. Evaluation of attenuated strain of Ehrlichia canis as a vaccine for canine monocytic ehrlichiosis. Vaccine. 2012;31:226–33. Inokuma H, Okuda M, Ohno K, Shimoda K, Onishi T. Analysis of 18S rRNA gene sequence of Hepatozoon detected in two Japanese dogs. Vet Parasitol. 2002;106:265–71. Olmeda AS, Armstrong PM, Rosenthal BM, Valladares B, del Castillo A, des Armas F, et al. A subtropical case of human babesiosis. Acta Trop. 1997;67:229–34. Kidd L, Maggi R, Diniz PP, Hegarty B, Tucker M, Breitschwerdt E. Evaluation of conventional and real-time PCR assays for detection and differentiation of spotted fever group rickettsia in dog blood. Vet Microbiol. 2008;129:294–303. Papich MG, Riviere JE. Chemotherapy and microbial diseases. In: Adams HR, editor. Veterinary pharmacology and therapeutics. 8th ed. Ames: Iowa State University Press; 2001. p. 868–97. Peleg O, Baneth G, Eyal O, Inbar J, Harrus S. Multiplex real-time qPCR for the detection of Ehrlichia canis and Babesia canis vogeli. Vet Parasitol. 2010;173:292–9. Tecles F, Caldin M, Zanella A, Membiela F, Tvarijonaviciute A, Subiela SM, et al. Serum acute phase protein concentrations in female dogs with mammary tumors. J Vet Diagn Invest. 2009;21:214–9. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37:277–85. Camkerten I, Sahin T, Borazan G, Gokcen A, Erel O, Das A. Evaluation of blood oxidant/antioxidant balance in dogs with sarcoptic mange. Vet Parasitol. 2009;161:106–9. Tvarijonaviciute A, Tecles F, Caldin M, Tasca S, Ceron J. Validation of spectrophotometric assays for serum paraoxonase type-1 measurment in dogs. Am J Vet Res. 2012;73:34–41. Martinez-Subiela S, Ceron JJ. Effects of hemolysis, lipemia, hyperbilirubinemia, and anticoagulants in canine C-reactive protein, serum amyloidal, and ceruloplasmin assays. Can Vet J. 2005;46:625–9. Shimada T, Ishida Y, Shimizu M, Nomura M, Kawato K, Iguchi K, et al. Monitoring C-reactive protein in beagle dogs experimentally inoculated with Ehrlichia canis. Vet Res Commun. 2002;26:171–7. Yule TD, Roth MB, Dreier K, Johnson AF, Palmer-Densmore M, Simmons K, et al. Canine parvovirus vaccine elicits protection from the inflammatory and clinical consequences of the disease. Vaccine. 1997;15:720–9. Martinez-Subiela S, Tecles F, Eckersall PD, Ceron JJ. Serum concentrations of acute phase proteins in dogs with leishmaniasis. Vet Rec. 2002;150:241–4. Martinez-Subiela S, Bernal LJ, Ceron JJ. Serum concentrations of acute –phase proteins in dogs with leishmaniosis during short term treatment. Am J Vet Res. 2003;64:1021–6. Sasanelli M, Paradies P, de Capariis D, Greco B, De Palo P, Palmisano D, et al. Acute –phase proteins in dogs naturally infected with Leishmania infantum after long term therapy with allopurinol. Vet Res Commun. 2007;31 Suppl 1:335–8. Martinez-Subiela S, Strauss-Ayali D, Ceron JJ, Baneth G. Acute phase protein response in experimental canine leishmaniasis. Vet Parasitol. 2011;180:197–202. Martinez-Subiela S, Gracia-Martinez JD, Tvarijonaviciute A, Tecles F, Caldin M, Bernal LJ, et al. Urinary C reactive protein levels in dogs with leishmaniasis at different stages of renal damage. Res Vet Sci. 2013;95:924–9. Matijatko V, Mrljak V, Kis I, Kucer N, Forsek J, Zivicnjak T, et al. Evidence of an acute phase response in dogs naturally infected with Babesia canis. Vet Parasitol. 2007;144:242–50. Koster LS, Van Scchoor M, Goddard A, Thompson PN, Matjila PT, Kjelgaard-Hansen M. C-reactive protein in canine babesiosis caused by Baesia rossi and its association with outcome. J S Afr Vet Assoc. 2009;80:87–91. Baric Rafaj R, Kules J, Selanec J, Vrkic N, Zovko Z, Zupancic M, et al. Markers of coagulation activation, endothelial stimulation, and inflammation in dogs with babesiosis. J Vet Intern Med. 2013;27:1172–8.