High-accuracy target tracking for multistatic passive radar based on a deep feedforward neural network

Zhejiang University Press - Tập 24 - Trang 1214-1230 - 2023
Baoxiong Xu1, Jianxin Yi1, Feng Cheng1, Ziping Gong1, Xianrong Wan1
1Electronic Information School, Wuhan University, Wuhan, China

Tóm tắt

In radar systems, target tracking errors are mainly from motion models and nonlinear measurements. When we evaluate a tracking algorithm, its tracking accuracy is the main criterion. To improve the tracking accuracy, in this paper we formulate the tracking problem into a regression model from measurements to target states. A tracking algorithm based on a modified deep feedforward neural network (MDFNN) is then proposed. In MDFNN, a filter layer is introduced to describe the temporal sequence relationship of the input measurement sequence, and the optimal measurement sequence size is analyzed. Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those of extended Kalman filter (EKF), unscented Kalman filter (UKF), and recurrent neural network (RNN) based tracking methods under the considered scenarios.

Tài liệu tham khảo

Amoozegar F, Sundareshan MK, 1994. Target tracking by neural network maneuver modeling. Proc IEEE Int Conf on Neural Networks, p.3932–3937. https://doi.org/10.1109/ICNN.1994.374840 Bengio Y, Simard P, Frasconi P, 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neur Netw, 5(2):157–166. https://doi.org/10.1109/72.279181 Bengtsson T, Bickel P, Li B, 2008. Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems. In: Nolan D, Speed T (Eds.), Probability and Statistics: Essays in Honor of David A. Freedman, Vol. 2. Institute of Mathematical Statistics, Beachwood, USA, p.316–334. https://doi.org/10.1214/193940307000000518 Chin L, 1994. Application of neural networks in target tracking data fusion. IEEE Trans Aerosp Electron Syst, 30(1): 281–287. https://doi.org/10.1109/7.250437 Choi S, Crouse DF, Willett P, et al., 2014. Approaches to Cartesian data association passive radar tracking in a DAB/DVB network. IEEE Trans Aerosp Electron Syst, 50(1):649–663. https://doi.org/10.1109/TAES.2013.120431 Ding J, Chen B, Liu HW, et al., 2016. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosc Remote Sens Lett, 13(3):364–368. https://doi.org/10.1109/LGRS.2015.2513754 Doucet A, de Freitas N, Gordon N, 2001. An introduction to sequential Monte Carlo methods. In: Doucet A, Freitas N, Gordon N (Eds.), Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York, USA, p.3–14. https://doi.org/10.1007/978-1-4757-3437-9_1 Fatseas K, Bekooij MJG, 2019. Neural network based multiple object tracking for automotive FMCW radar. Int Conf on Radar, p.1–5. https://doi.org/10.1109/RADAR41533.2019.171248 Gao C, Liu HW, Zhou SH, et al., 2018. Maneuvering target tracking with recurrent neural networks for radar application. Int Conf on Radar, p.1–5. https://doi.org/10.1109/RADAR.2018.8557284 Goodfellow I, Bengio Y, Courville A, et al., 2016. Deep learning architectures. In: Deep Learning, Vol. 1. MIT Press, Cambridge, USA, p.16–21. Gordon NJ, Salmond DJ, Smith AFM, 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F-Radar Signal Process, 140(2):107–113. https://doi.org/10.1049/ip-f-2.1993.0015 Griffiths HD, Baker CJ, 2005. Passive coherent location radar systems. Part 1: performance prediction. IEEE Proc-Radar Sonar Navig, 152(3):153–159. https://doi.org/10.1049/ip-rsn:20045082 Griffiths HD, Long NRW, 1986. Television-based bistatic radar. IEE Proc F-Commun Radar Signal Process, 133(7):649–657. https://doi.org/10.1049/ip-f-1.1986.0104 Gu JC, Wang HC, Ding GR, et al., 2020. UAV-enabled mobile radiation source tracking with deep reinforcement learning. Int Conf on Wireless Communications and Signal Processing, p.672–678. https://doi.org/10.1109/WCSP49889.2020.9299862 Higuchi T, 1997. Monte Carlo filter using the genetic algorithm operators. J Stat Comput Simul, 59(1):1–23. https://doi.org/10.1080/00949659708811843 Hornik K, 1991. Approximation capabilities of multilayer feedforward networks. Neur Netw, 4(2):251–257. https://doi.org/10.1016/0893-6080(91)90009-T Hornik K, Stinchcombe M, White H, 1989. Multilayer feedforward networks are universal approximators. Neur Netw, 2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8 Jiang L, Singh SS, Yıldırım S, 2015. Bayesian tracking and parameter learning for non-linear multiple target tracking models. IEEE Trans Signal Process, 63(21):5733–5745. https://doi.org/10.1109/TSP.2015.2454474 Kuschel H, 2013. Approaching 80 years of passive radar. Int Conf on Radar, p.213–217. https://doi.org/10.1109/RADAR.2013.6651987 Li XR, Jilkov VP, 2003. Survey of maneuvering target tracking. Part I: dynamic models. IEEE Trans Aerosp Electron Syst, 39(4):1333–1364. https://doi.org/10.1109/taes.2003.1261132 Liu H, Liu Z, Liu S, et al., 2019. A nonlinear regression application via machine learning techniques for geomagnetic data reconstruction processing. IEEE Trans Geosci Remote Sens, 57(1):128–140. https://doi.org/10.1109/TGRS.2018.2852632 Liu JX, Wang ZL, Xu M, 2020. DeepMTT: a deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network. Inform Fus, 53:289–304. https://doi.org/10.1016/j.inffus.2019.06.012 Ma NN, Zhang XY, Zheng HT, et al., 2018. ShuffleNet V2: practical guidelines for efficient CNN architecture design. Proc 15th European Conf on Computer Vision, p.122–138. https://doi.org/10.1007/978-3-030-01264-9_8 Malanowski M, Kulpa K, 2012. Two methods for target localization in multistatic passive radar. IEEE Trans Aerosp Electron Syst, 48(1):572–580. https://doi.org/10.1109/TAES.2012.6129656 Mazuelas S, Shen Y, Win MZ, 2013. Belief condensation filtering. IEEE Trans Signal Process, 61(18):4403–4415. https://doi.org/10.1109/TSP.2013.2261991 Ning XL, Wang F, Fang JC, 2017. An implicit UKF for satellite stellar refraction navigation system. IEEE Trans Aerosp Electron Syst, 53(3):1489–1503. https://doi.org/10.1109/TAES.2017.2671684 Oong TH, Isa NAM, 2011. Adaptive evolutionary artificial neural networks for pattern classification. IEEE Trans Neur Netw, 22(11): 1823–1836. https://doi.org/10.1109/TNN.2011.2169426 Palmer JE, Harms HA, Searle SJ, et al., 2013. DVB-T passive radar signal processing. IEEE Trans Signal Process, 61(8): 2116–2126. https://doi.org/10.1109/TSP.2012.2236324 Radmard M, Karbasi SM, Nayebi MM, 2013. Data fusion in MIMO DVB-T-based passive coherent location. IEEE Trans Aerosp Electron Syst, 49(3):1725–1737. https://doi.org/10.1109/TAES.2013.6558015 Rassalna P, Mishra T, 2020. Target detection, tracking and threat evaluation in multi sensor system using machine learning. 3rd Int Conf on Intelligent Sustainable Systems, p.837–842. https://doi.org/10.1109/ICISS49785.2020.9315910 Rumelhart DE, Hinton GE, Williams RJ, 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533–536. https://doi.org/10.1038/323533a0 Saha M, Ghosh R, Goswami B, 2014. Robustness and sensitivity metrics for tuning the extended Kalman filter. IEEE Trans Instrum Meas, 63(4):964–971. https://doi.org/10.1109/TIM.2013.2283151 Schön T, Gustafsson F, Nordlund PJ, 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans Signal Process, 53(7):2279–2289. https://doi.org/10.1109/TSP.2005.849151 Singer H, 2008. Generalized Gauss-Hermite filtering. AStA Adv Stat Anal, 92(2):179–195. https://doi.org/10.1007/s10182-008-0068-z Singer RA, 1970. Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Trans Aerosp Electron Syst, AES-6(4):473–483. https://doi.org/10.1109/TAES.1970.310128 Smidl V, Quinn A, 2008. Variational Bayesian filtering. IEEE Trans Signal Process, 56(10):5020–5030. https://doi.org/10.1109/TSP.2008.928969 Tichavsky P, Muravchik CH, Nehorai A, 1998. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Trans Signal Process, 46(5):1386–1396. https://doi.org/10.1109/78.668800 Wang XZ, Musicki D, Ellem R, et al., 2009. Efficient and enhanced multi-target tracking with Doppler measurements. IEEE Trans Aerosp Electron Syst, 45(4):1400–1417. https://doi.org/10.1109/TAES.2009.5310307 Yi JX, Wan XR, Cheng F, et al., 2015. Deghosting for target tracking in single frequency network based passive radar. IEEE Trans Aerosp Electron Syst, 51(4):2655–2668. https://doi.org/10.1109/TAES.2015.130424 Yin S, Zhu XP, 2015. Intelligent particle filter and its application to fault detection of nonlinear system. IEEE Trans Ind Electron, 62(6):3852–3861. https://doi.org/10.1109/TIE.2015.2399396