MicroRNAs in erythropoiesis and red blood cell disorders

Frontiers in Biology - Tập 10 - Trang 321-332 - 2015
Javad Mohammdai-asl1, Abolfazl Ramezani2, Fatemeh Norozi2, Amal Saki Malehi3, Ali Amin Asnafi2, Mohammad Ali Jalali Far2, Seyed Hadi Mousavi4, Najmaldin Saki2
1Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2Healthresearch Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran

Tóm tắt

MicroRNAs (miRNAs) are 19-24 nucleotide non-coding ribonucleic acids binding DNA or RNA and controlling gene expression via mRNA degradation or its transcription inhibition. Erythropoies is a multi step differentiation process of erythroid progenitors to nucleate red blood cells. Maturation, proliferation and differentiation of red blood cells is affected by erythroid factors, signaling pathways in niche of hematopoietic cells, transcription factors as well as miRNAs. Expression of different types of miRNAs during erythroid development provides a background for the study of these molecules to control erythroid differentiation and maturation as well as their use as diagnostic and prognostic markers to treat erythroid disorders like thalassemia, sickle cell disease and erythrocyte enzyme deficiencies. In this paper, with reference to biosynthesis of miRNAs, their function in normal and anemic erythropoiesis has been investigated. The target molecule of each of these miRNAs has been cited in an attempt to elucidate their role in erythropoiesis.

Tài liệu tham khảo

Aalto A P, Pasquinelli A E (2012). Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol, 24(3): 333–340 Aerbajinai W, Giattina M, Lee Y T, Raffeld M, Miller J L (2003). The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood, 102(2): 712–717 Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A(2010). Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica, 95(8): 1244–1252 Azzouzi I, Schmugge M, Speer O (2012). MicroRNAs as components of regulatory networks controlling erythropoiesis. Eur J Haematol, 89 (1): 1–9 Bakker W J, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer P J, Löwenberg B, von Lindern M, van Dijk T B (2004). FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol, 164(2): 175–184 Bakker W J, van Dijk T B, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak R G, Mak T W, Beug H, Löwenberg B, von Lindern M (2007). Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol, 27(10): 3839–3854 Baltimore D, Boldin M P, O’Connell R M, Rao D S, Taganov K D (2008). MicroRNAs: new regulators of immune cell development and function. Nat Immunol, 9(8): 839–845 Bank A (2006). Regulation of human fetal hemoglobin: new players, new complexities. Blood, 107(2): 435–443 Basu P, Lung T K, Lemsaddek W, Sargent T G, Williams D C Jr, Basu M, Redmond L C, Lingrel J B, Haar J L, Lloyd J A (2007). EKLF and KLF2 have compensatory roles in embryonic ß-globin gene expression and primitive erythropoiesis. Blood, 110(9): 3417–3425 Bianchi E, Zini R, Salati S, Tenedini E, Norfo R, Tagliafico E, Manfredini R, Ferrari S (2010). c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood, 116(22): e99–e110 Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R (2012). Involvement of miRNA in erythroid differentiation. Epigenomics, 4(1): 51–65 Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R (2009). Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep, 42(8): 493–499 Bracht J R, Van Wynsberghe P M, Mondol V, Pasquinelli A E (2010). Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Dev Biol, 348(2): 210–221 Bruchova H, Merkerova M, Prchal J T (2008). Aberrant expression of microRNA in polycythemia vera. Haematologica. 93(7): 1009–1016 Bruchova H, Yoon D, Agarwal A M, Mendell J, Prchal J T (2007). Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol, 35(11): 1657–1667 Bruchova H, Yoon D, Agarwal A M, Swierczek S, Prchal J T (2009). Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation. Blood Cells Mol Dis, 43(1): 81–87 Bruchova-Votavova H, Yoon D, Prchal J T (2010). miR-451 enhances erythroid differentiation in K562 cells. Leuk Lymphoma, 51(4): 686–693 Buccheri M A, Spina S, Ruberto C, Lombardo T, Labie D, Ragusa A A (2013). Annotated definition of BCL11A and HMIP-2 haplotypes through the analysis of sicilian ß-thalassemia patients with high levels of fetal hemoglobin. Hemoglobin, 37(5): 423–434 Byon J C, Papayannopoulou T (2012). MicroRNAs: Allies or foes in erythropoiesis? J Cell Physiol, 227(1): 7–13 Cantor A B, Orkin S H (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene, 21 (21): 3368–3376 Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, Annibali M, Emiliani R, Iliescu A, Rapa S, Roßsi R, Ma L, Angelucci E, Schrier S L (2000). The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood, 96(10): 3624–3629 Cheloufi S, Dos Santos C O, Chong M M, Hannon G J (2010). A dicerindependent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465(7298): 584–589 Chen S Y, Wang Y, Telen M J, Chi J T (2008). The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE, 3(6): e2360 Choong M L, Yang H H, McNiece I (2007). MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol, 35(4): 551–564 Davis M, Clarke S (2013). Influence of microRNA on the maintenance of human iron metabolism. Nutrients, 5(7): 2611–2628 Dore L C, Amigo J D, Dos Santos C O, Zhang Z, Gai X, Tobias J W, Yu D, Klein AM, Dorman C, Wu W, Hardison R C, Paw B H, Weiss MJ (2008). A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA, 105(9): 3333–3338 Fabbri M, Garzon R, Andreeff M, Kantarjian H M, Garcia-Manero G, Calin G A (2008). MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia, 22(6): 1095–1105 Fard A D, Hoßseini S A, Shahjahani M, Salari F, Jaseb K (2013). Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol Oncol Stem Cell Res, 7 (3): 47–54 Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin G A, Liu C G, Sorrentino A, Croce C M, Peschle C (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 102(50): 18081–18086 Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, Santoro S, Chicarella S, Sorrentino A, Peschle C, Marziali G (2009). MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. haematologica. Haematologica, 94(4): 479–86 Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005). GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 25(4): 1215–1227 Fu Y F, Du T T, Dong M, Zhu K Y, Jing C B, Zhang Y, Wang L, Fan H B, Chen Y, Jin Y, Yue G P, Chen S J, Chen Z, Huang Q H, Jing Q, Deng M, Liu T X (2009). Mir-144 selectively regulates embryonic a-hemoglobin synthesis during primitive erythropoiesis. Blood, 113(6): 1340–1349 García P, Frampton J (2008). Hematopoietic lineage commitment: miRNAs add specificity to a widely expressed transcription factor. Dev Cell, 14(6): 815–816 Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin G A, Liu C G, Bloomfield C D, Andreeff M, Croce C M (2006). MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA, 103(13): 5078–5083 Grebien F, Kerenyi M A, Kovacic B, Kolbe T, Becker V, Dolznig H, Pfeffer K, Klingmüller U, Müller M, Beug H, Müllner E W, Moriggl R (2008). Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood, 111(9): 4511–4522 Guerau-de-Arellano M, Alder H, Ozer H G, Lovett-Racke A, RackeMK (2012). miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol, 248(1-2): 32–39 Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, Martinelli G, Bosi A, Vannucchi A M, and the AGIMM (AIRC-Gruppo Italiano Malattie Mieloproliferative) Investigators (2011). Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood, 117(25): 6923–6927 Hansson A, Zetterblad J, Van Duren C, Axelson H, Jönsson J I (2007). The Lim-only protein LMO2 acts as a positive regulator of erythroid differentiation. Biochem Biophys Res Commun, 364(3): 675–681 Hattangadi S M, Wong P, Zhang L, Flygare J, Lodish H F (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118 (24): 6258–6268 Havelange V, Garzon R (2010). MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol, 85(12): 935–942 Higgs D R, Garrick D, Anguita E, De Gobbi M, Hughes J, Muers M, Vernimmen D, Lower K, Law M, Argentaro A, Deville M A, Gibbons R (2005). Understanding a-globin gene regulation: Aiming to improve the management of thalassemia. Ann N Y Acad Sci, 1054 (1): 92–102 Hilliard L M, Berkow R L (1996). The thalassemia syndromes. Prim Care Update Ob Gyns, 3(5): 157–162 Huang X, Gschweng E, Van Handel B, Cheng D, Mikkolav H K, Witte O N (2011). Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood, 117(7): 2157–2165 Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem, 275(21): 16023–16029 James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? Hematology (Am Soc Hematol Educ Program), 2008(1): 69–75 Kandhavelu M, Kandhavelu J (2012). pre-piRNA biogenesis mimics the pathway of miRNA. Biochem Syst Ecol, 43: 200–204 Karius T, Schnekenburger M, Dicato M, Diederich M (2012). MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol, 83(12): 1591–1601 Kim M, Tan Y S, Cheng W C, Kingsbury T J, Heimfeld S, Civin C I (2014). MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol, 168(4): 583–597 Kim S I, Bresnick E H (2007). Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene, 26(47): 6777–6794 Kosaka N, Sugiura K, Yamamoto Y, Yoshioka Y, Miyazaki H, Komatsu N, Ochiya T, Kato T (2008). Identification of erythropoietin-induced microRNAs in haematopoietic cells during erythroid differentiation. Br J Haematol, 142(2): 293–300 Lawrie C H (2010). microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol, 150(2): 144–151 Lee JM, Johnson J A (2004). An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol, 37(2): 139–143 Leonard M, Brice M, Engel J D, Papayannopoulou T (1993). Dynamics of GATA transcription factor expression during erythroid differentiation. Blood, 82(4): 1071–1079 Levine R L, Gilliland D G (2008). Myeloproliferative disorders. Blood, 112(6): 2190–2198 Listowski M A, Heger E, Boguslawska D M, Machnicka B, Kuliczkowski K, Leluk J, Sikorski A F (2013). microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett, 18(1): 34–46 Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, Giuliani A, Marziali G (2013). MicroRNA-486-3p regulates g-globin expression in human erythroid cells by directly modulating BCL11A. PLoS ONE, 8(4): e60436 Maniatis T, Fritsch E F, Lauer J, Lawn R M (1980). The molecular genetics of human hemoglobins. Annu Rev Genet, 14(1): 145–178 Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T (2007). Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun, 364(3): 509–514 Mathias L A, Fisher T C, Zeng L, Meiselman H J, Weinberg K I, Hiti A L, Malik P (2000). Ineffective erythropoiesis in ß-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol, 28(12): 1343–1353 Melotti P, Calabretta B (1996). Induction of hematopoietic commitment and erythromyeloid differentiation in embryonal stem cells constitutively expressing c-myb. Blood, 87(6): 2221–2234 Merkerova M, Belickova M, Bruchova H (2008). Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol, 81(4): 304–310 Moritz K M, Lim G B, Wintour E M (1997). Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol, 273(6 Pt 2): R1829–R1844 Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med, 10(11): 549–557 Munugalavadla V, Kapur R (2005). Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol, 54(1): 63–75 Noh S J, Miller S H, Lee Y T, Goh S H, Marincola F M, Stroncek D F, Reed C, Wang E, Miller J L (2009). Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med, 7(1): 98 O’Carroll D, Mecklenbrauker I, Das P P, Santana A, Koenig U, Enright A J, Miska E A, Tarakhovsky A (2007). A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev, 21(16): 1999–2004 O’Connell R M, Rao D S, Chaudhuri A A, Boldin M P, Taganov K D, Nicoll J, Paquette R L, Baltimore D (2008). Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med, 205(3): 585–594 Palis J (2008). Ontogeny of erythropoiesis. Curr Opin Hematol, 15(3): 155–161 Palis J (2014). Primitive and definitive erythropoiesis in mammals. Front Physiol, 5: 3 Papayannopoulou T, Kalmantis T, Stamatoyannopoulos G (1979). Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells. Proc Natl Acad Sci USA, 76(12): 6420–6424 Pase L, Layton J E, Kloosterman W P, Carradice D, Waterhouse P M, Lieschke G J (2009). miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 113(8): 1794–1804 Patrick D M, Zhang C C, Tao Y, Yao H, Qi X, Schwartz R J, Jun-Shen Huang L, Olson E N (2010). Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ξ. Genes Dev, 24(15): 1614–1619 Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu C G, Rassenti L, Calin G A Hagan J P, Kipps T, Croce C M (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res, 66(24): 11590–11593 Rasmussen K D, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright A J, O’Carroll D (2010). The miR-144/451 locus is required for erythroid homeostasis. J Exp Med, 207(7): 1351–1358 Saki N, Abroun S, Soleimani M, Hajizamani S, Shahjahani M, Kast R E, Mortazavi Y (2015). Involvement of microRNA in t-cell differentiation and malignancy. Int J Hematol Oncol Stem Cell Res, 9(1): 33–49 Sangokoya C, Telen MJ, Chi J T (2010). microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood, 116(20): 4338–4348 Sankaran V G (2011). Targeted therapeutic strategies for fetal hemoglobin induction. Hematology (Am Soc Hematol Educ Program), 2011(1): 459–465 Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, Umemura T (2013). Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis, 51(2): 98–103 Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, Eto Y (1992). Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc Natl Acad Sci USA, 89(5): 1553–1556 Shivdasani R A (2006). MicroRNAs: regulators of gene expression and cell differentiation. Blood, 108(12): 3646–3653 Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G, Fernandez- Luna J L (1999). Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem, 274(32): 22165–22169 Stamatoyannopoulos G (2005). Control of globin gene expression during development and erythroid differentiation. Exp Hematol, 33 (3): 259–271 Stenmark H (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 10(8): 513–525 Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1 + cells. Dev Cell, 23(1): 45–57 Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, Umemura T (2010). Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol, 89(10): 953–958 Tsiftsoglou A S, Vizirianakis I S, Strouboulis J (2009). Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life, 61(8): 800–830 Valencia-Sanchez M A, Liu J, Hannon G J, Parker R (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20(5): 515–524 van de Loosdrecht A A, Vellenga E (2000). Myelodysplasia and apoptosis: new insights into ineffective erythropoiesis. Med Oncol, 17(1): 16–21 Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010). The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol, 84(1): 1–16 Wadman I A, Osada H, Grütz G G, Agulnick A D, Westphal H, Forster A, Rabbitts T H (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J, 16(11): 3145–3157 Walker A L, Steward S, Howard T A, Mortier N, Smeltzer M, Wang Y D, Ware R E (2011). Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia. Blood, 118 (20): 5664–5670 Wall L, deBoer E, Grosveld F (1988). The human beta-globin gene 3' enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev, 2(9): 1089–1100 Wang F, Yu J, Yang G H, Wang X S, Zhang J W (2011). Regulation of erythroid differentiation by miR-376a and its targets. Cell Res, 21(8): 1196–1209 Wang F, Zhu Y, Guo L, Dong L, Liu H, Yin H, Zhang Z, Li Y, Liu C, Ma Y, Song W, He A, Wang Q, Wang L, Zhang J, Li J, Yu J (2013). A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res, 42(1): 442–457 Wang L, Li L, Chu S, Shiang K, Li M, Sun H, Xu J, Xiao F J, Sun G, Rossi J J, Ho Y, Bhatia R (2014). MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood, 125(8):1302–1303 Wang Q, Huang Z, Xue H, Jin C, Ju X L, Han J D J, Chen Y G (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 111(2): 588–595 Warren A J, Colledge WH, Carlton MB, Evans MJ, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57 Welch J J, Watts J A, Vakoc C R, Yao Y, Wang H, Hardison R C, Blobel G A, Chodosh L A, Weiss M J (2004). Global regulation of erythroid gene expression by transcription factor GATA-1. Blood, 104(10): 3136–3147 Williams D E, Eisenman J, Baird A, Rauch C, Van Ness K, March C J, Park L S, Martin U, Mochizuki D Y, Boswell H S, Burgess G S, Cosman D, Lyman S D (1990). Identification of a ligand for the c-kit proto-oncogene. Cell, 63(1): 167–174 Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67 Xu MJ, Sui X, Zhao R, Dai C, Krantz S B, Zhao Z J (2003). PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood, 102(13): 4354–4360 Xu R H, Sampsell-Barron T L, Gu F, Root S, Peck R M, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson J A (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2): 196–206 Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6): 892–903 Yu D, dos Santos C O, Zhao G, Jiang J, Amigo J D, Khandros E, Dore L C, Yao Y, D’Souza J, Zhang Z, Ghaffari S, Choi J, Friend S, Tong W, Orange J S, Paw B H, Weiss M J (2010). miR-451 protects against erythroid oxidant stress by repressing 14-3-3z. Genes Dev, 24(15): 1620–1633 Yuan J, Angelucci E, Lucarelli G, Aljurf M, Snyder LM, Kiefer C R, Ma L, Schrier S L (1993). Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe betathalassemia (Cooley’s anemia). Blood, 82(2): 374–377 Zhai P F, Wang F, Su R, Lin H S, Jiang C L, Yang G H, Yu J, Zhang JW (2014). The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor a (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem, 289(33): 22600–22613 Zhan M, Miller C P, Papayannopoulou T, Stamatoyannopoulos G, Song C Z (2007). MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol, 35(7): 1015–1025 Zhang L, Flygare J, Wong P, Lim B, Lodish H F (2011). miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev, 25(2): 119–124 Zhang L, Sankaran V G, Lodish H F (2012). MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia, 26(11): 2310–2316 Zhao H, Kalota A, Jin S, Gewirtz A M (2009). The c-myb protooncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood, 113(3): 505–516 Zhou D, Liu K, Sun C W, Pawlik K M, Townes T M (2010). KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet, 42(9): 742–744 Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J (2013). A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res, 41(7): 4129–4143