On the Betti numbers of a hyperbolic manifold

Geometric and Functional Analysis - Tập 2 - Trang 126-136 - 1992
X. Xue1
1Department of Mathematics, University of California, Los Angeles, Los Angeles, USA

Tài liệu tham khảo

[B]A. Borel, Cohomolgie de sous-groupes discretes et representations de groupes semi-simples, Asterisque 32–33 (1976). [DW]D. DeGeorge and N. Wallach, Limit formulas for multiplicities inL 2 (G/г), I, Ann. of Math. 107 (1978); II, Ann. of Math. 129 (1978). [HW]R. Hotta and N. Wallach, On Matsushima's formula for the Betti numbers of a locally symmetric space, Osaka J. Math. 12 (1975). [K]D. Kazhdan, Some applications of Weil representation. J. D'Analyse Math. 32 (1977). [Kn]M. Kneser, Strong approximation, Proc. Sympos. Pure Math. 9 (1966). [L]J. Li, Non-vanishing Theorems for the cohomology of certain arithmetic quotients, Preprint. [Ma]Y. Matsushima, On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces, Ann. of Math. 2 (1962), 75. [M]J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. 104 (1976). [MR]J. Millson and M. Raghunathan, Geometric construction of cohomology for arithmetic groups, Proc. Indian Acad. Sci. (Math. Sci.) 90 (1981). [S]P. Sarnak, Betti Numbers of congruence groups, Preprint. [SX]P. Sarnak and X. Xue, Bounds for multiplicities of automorphic forms, Duke Math. J. 64, 1991. [X]X. Xue, On the first Betti numbers of hyperbolic surfaces, Duke Math. J. 64, 1991.