Synthesis of nanosized MnO2 prepared by the polyol method and its application in high power supercapacitors

E. Goikolea1,2, B. Daffos2, P. L. Taberna2, P. Simon2
1CIC Energigune, Arabako Parke Teknologikoa, Miñano, Spain
2Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse Cedex 4, France

Tóm tắt

Over the last years, the different polymorphs of MnO2 have been intensely studied as alternative compounds to amorphous hydrous RuO2 as supercapacitor electrode materials. In the present work, nanosized birnessite-type MnO2 platelets were synthesized via the polyol method followed by a subsequent ligand removal with NaOH. The resulting compound is easily dispersible in polar solvents, thus allowing the preparation of stable dispersions (2–3 days) that could be used in thin electrode preparation. The capacitance of the synthesized product was 130 F g−1 in a potential window of 0.8 V at a scan rate of 2 mV s−1. The synthesized material was also studied using a cavity microelectrode to evaluate the electrochemical performance of the nanostructured oxide at high scan rates. Cyclic voltammetry measurements were successfully carried out both in the previous potential window between 0.1 and 0.9 V (vs. SHE) and in a larger potential window between −0.6 and 1.1 V (vs. SHE) from 0.1 and up to 1,000 mV s−1. Therefore, herein prepared material could be potentially used for high power applications, although further work should be carried out to upscale such compound without compromising the performance.

Tài liệu tham khảo

Miller, J.R., Burke, A.F.: Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17, 53–57 (2008) Miller, J.R., Simon, P.: Electrochemical capacitors for energy management. Science 321, 651–652 (2008) Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008) Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006) Zhai, Y., Dou, Y., Zhao, D., Fulvio, P.F., Mayers, R.T., Dai, S.: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011) Presser, V., Heon, M., Gogotsi, Y.: Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011) Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010) Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011) Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012) Hadzi-Jordanov, S., Angerstein-Kozlowska, H., Vukoviff, M., Conway, B.E.: Reversibility and growth behavior of surface oxide films at ruthenium electrodes. J. Electrochem. Soc. 125, 1471–1480 (1978) Long, J.W., Swider, K.E., Merzbacher, C.I., Rolison, D.R.: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15, 780–785 (1999) Feng, Q., Kanohb, H., Ooi, K.: Manganese oxide porous crystals. J. Mater. Chem. 9, 319–333 (1999) Ghodbane, O., Pascal, J.-L., Favier, F.: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009) Ghodbane, O., Pascal, J.-L., Fraisse, B., Favier, F.: Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493–3505 (2010) Toupin, M., Brousse, T., Belanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004) Lee, H.Y., Goodenough, J.B.: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999) Toupin, M., Brousse, T., Bélanger, D.: Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002) Wang, Y., Yuan, A., Wang, X.: Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors. J. Solid State Electrochem. 12, 1101–1107 (2008) Bélanger, D., Brousse, T., Long, J.W.: Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interface 17, 49–52 (2008) Li, W., Liu, Q., Sun, Y., Sun, J., Zou, R., Li, G., Hu, X., Song, G., Ma, G., Yang, J., Chen, Z., Hu, J.: MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. J. Mater. Chem. 22, 14864–14867 (2012) Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002) Feldmann, C.: Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 13, 101–107 (2003) Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004) Salado, J., Insausti, M., Lezama, L., Gil de Muro, I., Goikolea, E., Rojo, T.: Preparation and characterization of monodisperse Fe3O4 nanoparticles: an electron magnetic resonance study. Chem. Mater. 23, 2879–2885 (2011) Kim, D.-H., Kim, J.: Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett. 9, A439–A442 (2006) Oh, S.W., Huang, Z.-D., Zhang, B., Yu, Y., He, Y.-B., Kim, J.-K.: Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by polyol method. J. Mater. Chem. 22, 17215–17221 (2012) Liu, L., Yang, Z., Liang, H., Yang, H., Yang, Y.: Shape-controlled synthesis of manganese oxide nanoplates by a polyol-based precursor route. Mater. Lett. 64, 891–893 (2010) Rhadfi, T., Piquemal, J.-Y., Sicard, L., Herbst, F., Briot, E., Benedetti, M., Atlamsani, A.: Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl. Cat. A 386, 132–139 (2010) Sicard, L., Le Meins, J.-M., Méthivier, C., Herbst, F., Ammar, S.: Polyol synthesis and magnetic study of Mn3O4 nanocrystals of tunable size. J. Magn. Magn. Mater. 322, 2634–2640 (2010) Wan, J., Cai, W., Feng, J., Meng, X., Liu, E.: In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J. Mater. Chem. 17, 1188–1192 (2007) Come, J., Taberna, P.-L., Hamelet, S., Masquelier, C., Simon, P.: Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J. Electrochem. Soc. 158, A1090–A1093 (2011) Hu, Y., Zhu, H., Wang, J., Chen, Z.: Synthesis of layered birnessite type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors. J. Alloys Comp. 509, 10234–10240 (2011) Yang, X., Makita, Y., Liu, Z.-H., Sakane, K., Ooi, K.: Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem. Mater. 16, 5581–5588 (2004) Potter, R.M., Rossman, G.R.: The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am. Miner. 64, 1199–1218 (1979) Anant, M.V., Pethkar, S., Dakshinamurthi, K.: Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes-an FTIR study. J. Power Sources 75, 278–282 (1998) Brousse, T., Toupin, M., Dugas, R., Athouël, L., Crosnier, O., Bélanger, D.: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171–A2180 (2006) Donne, S.W., Lawrance, G.A., Swinkels, D.A.J.: Redox processes at the manganese dioxide electrode.1. Constant-current intermittent discharge. J. Electrochem. Soc. 144, 2949–2953 (1997) Donne, S.W., Lawrance, G.A., Swinkels, D.A.J.: Redox processes at the manganese dioxide electrode 2. Slow-scan cyclic voltammetry. J. Electrochem. Soc. 144, 2954–2961 (1997) Donne, S.W., Lawrance, G.A., Swinkels, D.A.J.: Redox processes at the manganese dioxide electrode 3. Detection of soluble and solid intermediates during reduction. J. Electrochem. Soc. 144, 2961–2967 (1997) Raymundo-Piñero, E., Khomenko, V., Frackowiak, E., Béguin, F.: Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J. Electrochem. Soc. 152, A229–A235 (2005) Athouël, L., Arcidiacono, P., Ramirez-Castro, C., Crosnier, O., Hamel, C., Dandeville, Y., Guillemet, P., Scudeller, Y., Guay, D., Bélanger, D., Brousse, T.: Investigation of cavity microelectrode technique for electrochemical study with manganese dioxides. Electrochim. Acta 86, 268–276 (2012)