A look into chaos detection through topological data analysis
Tài liệu tham khảo
Benettin, 1980, Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: A method for computing all of them. part 2: Numerical application, Meccanica, 15, 21, 10.1007/BF02128237
Wolf, 1985, Determining Lyapunov exponents from a time series, Physica D, 16, 285, 10.1016/0167-2789(85)90011-9
Wernecke, 2017, How to test for partially predictable chaos, Sci. Rep., 7, 10.1038/s41598-017-01083-x
Gottwald, 2004, A new test for chaos in deterministic systems, Proc. R. Soc. A, 460, 603, 10.1098/rspa.2003.1183
Gottwald, 2005, Testing for chaos in deterministic systems with noise, Physica D, 212, 100, 10.1016/j.physd.2005.09.011
Gottwald, 2009, On the implementation of the 0–1 test for chaos, SIAM J. Appl. Dyn. Syst., 8, 129, 10.1137/080718851
Skokos, 2016
Gottwald, 2016, The 0-1 test for chaos: A review, 221
Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Melosik, 2016, On the 0/1 test for chaos in continuous systems, Bull. Pol. Acad. Sci. Tech. Sci., 64, 521
A. Myers, F. Khasawneh, On the Automatic Parameter Selection for Permutation Entropy, arXiv:http://arxiv.org/abs/1905.06443v1.
A.D. Myers, F.A. Khasawneh, Delay Parameter Selection in Permutation Entropy Using Topological Data Analysis, arXiv:http://arxiv.org/abs/1905.04329v1.
Gottwald, 2009, On the validity of the 0–1 test for chaos, Nonlinearity, 22, 1367, 10.1088/0951-7715/22/6/006
Robinson, 2014
J.A. Perea, Topological Time Series Analysis, arXiv:http://arxiv.org/abs/1812.05143v1.
Khasawneh, 2018, Topological data analysis for true step detection in periodic piecewise constant signals, Proc. R. Soc. A, 474, 10.1098/rspa.2018.0027
Gidea, 2018, Topological recognition of critical transitions in time series of cryptocurrencies, SSRN Electron. J., 10.2139/ssrn.3202721
Khasawneh, 2016, Chatter detection in turning using persistent homology, Mech. Syst. Signal Process., 70–71, 527, 10.1016/j.ymssp.2015.09.046
Khasawneh, 2018, Chatter classification in turning using machine learning and topological data analysis, IFAC-PapersOnLine, 51, 195, 10.1016/j.ifacol.2018.07.222
M.C. Yesilli, F.A. Khasawneh, A. Otto, Topological feature vectors for chatter detection in turning processes, arXiv:http://arxiv.org/abs/1905.08671v2.
M.C. Yesilli, S. Tymochko, F.A. Khasawneh, E. Munch, Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector, arXiv:http://arxiv.org/abs/1910.12359v1.
Offroy, 2016, Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry, Anal. Chim. Acta, 910, 1, 10.1016/j.aca.2015.12.037
Li, 2018, The persistent homology mathematical framework provides enhanced genotype-to-phenotype associations for plant morphology, Plant Physiol., 10.1104/pp.18.00104
Mittal, 2017, Topological characterization and early detection of bifurcations and chaos in complex systems using persistent homology, Chaos, 27, 10.1063/1.4983840
J.R. Tempelman, F.A. Khasawneh, Chaos Detection with Persistent Homology, Mendeley Data, http://dx.doi.org/10.17632/4kszknf6vj.2.
Munkres, 1993
Munch, 2017, A user’s guide to topological data analysis, J. Learn. Anal., 4, 47
Cohen-Steiner, 2006, Stability of persistence diagrams, Discrete Comput. Geom., 37, 103, 10.1007/s00454-006-1276-5
Ghrist, 2014
Edelsbrunner, 2013
Edelsbrunner, 2008
E. Berry, Y.-C. Chen, J. Cisewski-Kehe, B.T. Fasy, Functional Summaries of Persistence Diagrams, arXiv:http://arxiv.org/abs/1804.01618v1.
Botev, 2010, Kernel density estimation via diffusion, Ann. Statist., 38, 2916, 10.1214/10-AOS799
Gottwald, 2008, Comment on “reliability of the 0-1 test for chaos”, Phys. Rev. E, 77, 10.1103/PhysRevE.77.028201
Adler, 2019, Modelling persistence diagrams with planar point processes, and revealing topology with bagplots, J. Appl. Comput. Topol., 3, 139, 10.1007/s41468-019-00035-w
Adler, 2010, Persistent homology for random fields and complexes, 124, 10.1214/10-IMSCOLL609
Adler, 2014, Crackle: The homology of noise, Discrete Comput. Geom., 52, 680, 10.1007/s00454-014-9621-6
Kahle, 2013, Limit theorems for betti numbers of random simplicial complexes, Homology, Homotopy Appl., 15, 343, 10.4310/HHA.2013.v15.n1.a17
Rössler, 1976, An equation for continuous chaos, Phys. Lett. A, 57, 397, 10.1016/0375-9601(76)90101-8
Letellier, 1995, Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization, Chaos, 5, 271, 10.1063/1.166076
May, 2004, Simple mathematical models with very complicated dynamics, 85