Poria cocos polysaccharides exert prebiotic function to attenuate the adverse effects and improve the therapeutic outcome of 5-FU in ApcMin/+ mice

Chinese Medicine - Tập 17 - Trang 1-14 - 2022
Lin Yin1, Guoxin Huang1,2,3, Imran Khan1, Lu Su1, Wenrui Xia1, Betty Yuen Kwan Law1, Vincent Kam Wai Wong1, Qiang Wu1, Jingyi Wang1, Wai Kit Leong1, W. L. Wendy Hsiao1,4
1State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
2Clinical Research Center, Shantou Central Hospital, Shantou, China
3Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
4Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China

Tóm tắt

As a first-line chemotherapeutic agent, 5-fluorouracil (5-FU) exhibits many side effects, weakening its efficacy in cancer treatment. In this study, we hypothesize that Poria cocos polysaccharides (PCP), a traditional Chinese herbal medicine with various bioactivities and prebiotic effects, might improve the therapeutic effect of 5-FU by restoring the homeostasis of the gut microenvironment and the commensal gut microflora. ApcMin/+ mice were employed to evaluate the anti-cancer effect of 5-FU in conjunction with PCP treatment. Body weight and food consumption were monitored weekly. Polyp count was used to assess the anti-cancer effect of PCP and 5-FU. Expressions of mucosal cytokines and gut epithelial junction molecules were measured using qRT-PCR. 16S rRNA gene sequencing of fecal DNAs was used to evaluate the compositional changes of gut microbiota (GM). Transplantation of Lactobacillus johnsonii and Bifidobacterium animalis were performed to verify the prebiotic effects of PCP in improving the efficacy of 5-FU. The results showed that PCP treatment alleviated the weight loss caused by 5-FU treatment and reduced the polyp burden in ApcMin/+ mice. Additionally, PCP treatment eased the cytotoxic effects of 5-FU by reducing the expressions of pro-inflammatory cytokines, increasing the anti-inflammatory cytokines; and significantly improving the gut barriers by enhancing the tight junction proteins and associated adhesion molecules. Furthermore, 16S rRNA gene sequencing data showed that PCP alone or with 5-FU could stimulate the growth of probiotic bacteria (Bacteroides acidifaciens, Bacteroides intestinihominis, Butyricicoccus pullicaecorum, and the genera Lactobacillus, Bifidobacterium, Eubacterium). At the same time, it inhibited the growth of potential pathogens (e.g., Alistipes finegoldii, Alistipes massiliensis, Alistipes putredinis., Citrobacter spp., Desulfovibrio spp., and Desulfovibrio desulfuricans). Moreover, the results showed that transplantation of L.johnsonii and B.animalis effectively reduced the polyp burden in ApcMin/+ mice being treated with 5-FU. Our study showed that PCP could effectively improve the anti-cancer effect of 5-FU by attenuating its side effects, modulating intestinal inflammation, improving the gut epithelial barrier, and modulating the gut microbiota of ApcMin/+ mice.

Tài liệu tham khảo

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660. Ghiringhelli F, Apetoh L. Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives. Biomed J. 2015;38(2):111–6. https://doi.org/10.4103/2319-4170.130923. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. https://doi.org/10.1038/nrc1074. Hamouda N, Sano T, Oikawa Y, Ozaki T, Shimakawa M, Matsumoto K, Amagase K, Higuchi K, Kato S. Apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of 5-fluorouracil-induced intestinal muco-sitis in mice. Basic Clin Pharmacol Toxicol. 2017;121(3):159–68. https://doi.org/10.1111/bcpt.12793. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(S9):1995–2025. https://doi.org/10.1002/cncr.20162. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80. https://doi.org/10.1053/j.gastro.2008.10.080. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3(5):431–8. https://doi.org/10.1038/nrmicro1152. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut mi-crobiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65. https://doi.org/10.1038/nrgastro.2017.20. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. https://doi.org/10.1126/science.1240537. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70. https://doi.org/10.1126/science.1240527. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/science.aad1329. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084–9. https://doi.org/10.1126/science.aac4255. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and cl-inical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704. https://doi.org/10.1038/s41575-019-0209-8. Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411. https://doi.org/10.1146/annurev-micro-102215-095513. Wu J, Gan Y, Li M, Chen L, Liang J, Zhuo J, Luo H, Xu N, Wu X, Wu Q. Patcho-uli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota. Biomed Pharmacother. 2020;124: 109883. https://doi.org/10.1016/j.biopha.2020.109883. Li H-L, Lu L, Wang X-S, Qin L-Y, Wang P, Qiu S-P, Wu H, Huang F, Zhang B-B, Shi H-L. Alteration of gut microbiota and inflammatory cytokine/chemokine profil-es in 5-fluorouracil induced intestinal mucositis. Front Cell Infect Microbiol. 2017;7:455. https://doi.org/10.3389/fcimb.2017.00455. Yuan L, Zhang S, Li H, Yang F, Mushtaq N, Ullah S, Shi Y, An C, Xu J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 2018;108:184–93. https://doi.org/10.1016/j.biopha.2018.08.165. Sougiannis A, VanderVeen B, Enos R, Velazquez K, Bader J, Carson M, Chatzist-amou I, Walla M, Pena M, Kubinak J. Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota. Brain, behavior, and im-munity. 2019;80:44–55. https://doi.org/10.1016/j.bbi.2019.02.020. Justino PF, Melo LF, Nogueira AF, Costa JV, Silva LM, Santos CM, Mendes WO, Costa MR, Franco AX, Lima AA. Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr. 2014;111(9):1611–21. https://doi.org/10.1017/S0007114513004248. Wu T, Munro AJ, Guanjian L, Liu GJ. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database Syst Rev. 2005. https://doi.org/10.1002/14651858.CD004540.pub2. Chen K-J, Huang Y-L, Kuo L-M, Chen Y-T, Hung C-F, Hsieh P-W. Protective role of casuarinin from Melastoma malabathricum against a mouse model of 5-fluorouracil–induced intestinal mucositis: Impact on inflammation and gut microbiota dys-biosis. Phytomedicine. 2022;101: 154092. https://doi.org/10.1016/j.phymed.2022.154092. Huang G, Khan I, Li X, Chen L, Leong W, Ho LT, Hsiao WLW. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in ApcMin/+ mice. Sci Rep. 2017;7(1):12552. https://doi.org/10.1038/s41598-017-12644-5. Khan I, Huang G, Li X, Leong W, Xia W, Hsiao WLW. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J Funct Foods. 2018;41:191–201. https://doi.org/10.1016/j.jff.2017.12.046. Khan I, Huang G, Li X, Liao W, Leong WK, Xia W, Bian X, Wu J, Hsiao WLW. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice. Pharmacolo-gical Res. 2019;148: 104448. https://doi.org/10.1016/j.phrs.2019.104448. Xia W, Li X, Khan I, Yin L, Su L, Leong WK, Bian X, Su J, Hsiao W, Huang G. Lycium Berry polysaccharides strengthen gut microenvironment and modulate gut microbiota of the mice. Evid Based Complement Alternat Med. 2020. https://doi.org/10.1155/2020/8097021. Sun S-S, Wang K, Ma K, Bao L, Liu H-W. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin J Nat Med. 2019;17(1):3–14. https://doi.org/10.1016/s1875-5364(19)30003-2. Jiang Y, Fan L. The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer. J Ethnopharmacol. 2021;266: 113456. https://doi.org/10.1016/j.jep.2020.113456. Wang N, Liu D, Guo J, Sun Y, Guo T, Zhu X. Molecular mechanism of Poria cocos combined with oxaliplatin on the inhibition of epithelial-mesenchymal transition in gastric cancer cells. Biomed Pharmacother. 2018;102:865–73. https://doi.org/10.1016/j.biopha.2018.03.134. Wang J, Zheng D, Huang F, Zhao A, Kuang J, Ren Z, Chen T, Lei J, Lin J, Wang X, Jia W, Xie G, Zheng X. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism. Front Pharmacol. 2022;13: 875549. https://doi.org/10.3389/fphar.2022.875549. Lai Y, Yu H, Deng H, Fang Q, Lei H, Liu L, Wu N, Guo X, Song C. Three main metabolites from Wolfiporia cocos (F. A. Wolf) Ryvarden & Gilb regulate the gut microbiota in mice: a comparative study using microbiome-metabolomics. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.911140. Sun S, Wang K, Sun L, Cheng B, Qiao S, Dai H, Shi W, Ma J, Liu H. Therapeutic manipulation of gut microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced PGE2 to alcoholic hepatic steatosis. Gut Microbes. 2020;12(1):1830693. https://doi.org/10.1080/19490976.2020.1830693. Chen L, Brar MS, Leung FC, Hsiao WW. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice. Oncotarget. 2016;7(21):31226. https://doi.org/10.1080/19490976.2020. Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA. Bacterial tag–encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis. 2008;5(4):459–72. https://doi.org/10.1089/fpd.2008.0107. Li X, Khan I, Xia W, Huang G, Liu L, Law BYK, Yin L, Liao W, Leong W, Han R. Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice. Pharmacol Res. 2021;168: 105587. https://doi.org/10.1016/j.phrs.2021.105587. Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes. 2021;13(1):1847629. https://doi.org/10.1080/19490976.2020.1847629. Puppa MJ, White JP, Sato S, Cairns M, Baynes JW, Carson JA. Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia. Biochim Biophys Acta. 2011;1812(12):1601–6. https://doi.org/10.1016/j.bbadis.2011.08.010. Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett. 2014;162(2):54–61. https://doi.org/10.1016/j.imlet.2014.05.014. Loh C-Y, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. https://doi.org/10.3390/cells8101118. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95. https://doi.org/10.1172/JCI59643. Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut microbiota manipulation as a tool for colorectal cancer management: recent advances in its use for therapeutic purposes. Int J Mol Sci. 2020;21(15):5389. https://doi.org/10.3390/ijms21155389. Osman MA, Neoh H-M, Ab Mutalib N-S, Chin S-F, Mazlan L, Raja Ali RA, Zakaria AD, Ngiu CS, Ang MY, Jamal R. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-82465-0. Selvanantham T, Lin Q, Guo CX, Surendra A, Fieve S, Escalante NK, Guttman DS, Streutker CJ, Robertson SJ, Philpott DJ. NKT cell–deficient mice harbor an altered microbiota that fuels intestinal inflammation during chemically induced colitis. J Immunol. 2016;197(11):4464–72. https://doi.org/10.4049/jimmunol.1601410. Shah AM, Ma J, Wang Z, Hu R, Wang X, Peng Q, Amevor FK, Goswami N. Production of hydrogen sulfide by fermentation in rumen and its impact on health and production of animals. Processes. 2020;8(9):1169. https://doi.org/10.3390/pr8091169. Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010;51(4):304–14. https://doi.org/10.1002/em.20546. Hullar MA, Burnett-Hartman AN, Lampe JW. Gut microbes, diet, and cancer. In: Zappia Vincenzo, Panico Salvatore, Russo Gian Luigi, Budillon Alfredo, Ragione Fulvio Della, editors. Advances in nutrition and cancer. Heidelberg: Springer; 2014. Dekker JP, Frank KM. Salmonella, Shigella, and yersinia. Clin Lab Med. 2015;35(2):225–46. https://doi.org/10.1016/j.cll.2015.02.002. Parker BJ, Wearsch PA, Veloo A, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. https://doi.org/10.3389/fimmu.2020.00906. Gibson DL, Ma C, Rosenberger CM, Bergstrom KS, Valdez Y, Huang JT, Khan MA, Vallance BA. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol. 2008;10(2):388–403. https://doi.org/10.1111/j.1462-5822.2007.01052.x. Luperchio SA, Schauer DB. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 2001;3(4):333–40. https://doi.org/10.1016/S1286-4579(01)01387-9. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40. https://doi.org/10.1194/jlr.R036012. Chen H, Zhang F, Li R, Liu Y, Wang X, Zhang X, Xu C, Li Y, Guo Y, Yao Q. Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota. Biomed Pharmacother. 2020;124: 109829. https://doi.org/10.1016/j.biopha.2020.109829. Wang C, Yang S, Gao L, Wang L, Cao L. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice. Food Funct. 2018;9(5):2695–704. https://doi.org/10.1039/c7fo01886j. Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165: 105420. https://doi.org/10.1016/j.phrs.2021.105420. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijks-tra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277. Fonseca W, Lucey K, Jang S, Fujimura KE, Rasky A, Ting HA, Petersen J, Johnson CC, Boushey HA, Zoratti E, Ownby DR, Levine AM, Bobbit KR, Lynch SV, Lukacs NW. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. Mucosal Immunol. 2017;10(6):1569–80. https://doi.org/10.1038/mi.2017.13. Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, Westbrook AM, Wei B, Loy A, Chang C, Braun J, Borneman J, Schiestl RH. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 2013;73(14):4222–32. https://doi.org/10.1158/0008-5472.CAN-13-0022.