Multi-grid representation with field regularization for self-supervised surface reconstruction from point clouds

Computers and Graphics - Tập 114 - Trang 379-386 - 2023
Chuan Jin1, Tieru Wu1, Junsheng Zhou2
1School of Mathematics, Jilin University, 130012, Changchun, China
2School of Software, Tsinghua University, 100084 Beijing, China

Tài liệu tham khảo

Berger, 2017, A survey of surface reconstruction from point clouds, Comput Graph Forum, 36, 10.1111/cgf.12802 Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, et al. Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. 2001. Kazhdan MM, Bolitho M, Hoppe H. Poisson surface reconstruction. In: Eurographics symposium on geometry processing. 2006. Kazhdan, 2013, Screened poisson surface reconstruction, ACM Trans Graph, 32, 29:1, 10.1145/2487228.2487237 Öztireli, 2009, Feature preserving point set surfaces based on non-linear kernel regression, Comput Graph Forum, 28, 10.1111/j.1467-8659.2009.01388.x Ma B, Han Z, Liu Y-S, Zwicker M. Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces. In: International conference on machine learning. 2020. Gropp A, Yariv L, Haim N, Atzmon M, Lipman Y. Implicit Geometric Regularization for Learning Shapes. In: International conference on machine learning. 2020. Jiang CM, Sud A, Makadia A, Huang J, Nießner M, Funkhouser TA. Local Implicit Grid Representations for 3D Scenes. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 6000–9. Erler P, Guerrero P, Ohrhallinger S, Mitra NJ, Wimmer M. Points2Surf Learning Implicit Surfaces from Point Clouds. In: European conference on computer vision. 2020. Chabra, 2020 Ma B, Liu Y-S, Zwicker M, Han Z. Surface Reconstruction from Point Clouds by Learning Predictive Context Priors. In: 2022 IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 6316–27. Ma B, Liu Y-S, Han Z. Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors. In: 2022 IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 6305–15. Ma B, Zhou J, Liu Y-S, Han Z. Towards Better Gradient Consistency for Neural Signed Distance Functions via Level Set Alignment. In: Conference on computer vision and pattern recognition. 2023. Ma B, Liu Y-S, Han Z. Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise to Noise Mapping. In: International conference on machine learning. 2023. Digne, 2011, Scale space meshing of raw data point sets, Comput Graph Forum, 30, 10.1111/j.1467-8659.2011.01848.x Sharf, 2006, Competing fronts for coarse–to–fine surface reconstruction, Comput Graph Forum, 25, 10.1111/j.1467-8659.2006.00958.x Li G, Liu L, Zheng H, Mitra NJ. Analysis, reconstruction and manipulation using arterial snakes. In: ACM SIGGRAPH asia 2010 papers. 2010. Williams F, Schneider T, Silva CT, Zorin D, Bruna J, Panozzo D. Deep Geometric Prior for Surface Reconstruction. In: 2019 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 10122–31. Mescheder LM, Oechsle M, Niemeyer M, Nowozin S, Geiger A. Occupancy Networks: Learning 3D Reconstruction in Function Space. In: 2019 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 4455–65. Park JJ, Florence PR, Straub J, Newcombe RA, Lovegrove S. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In: 2019 IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 165–74. Li S, Zhou J, Ma B, Liu Y-S, Han Z. NeAF: Learning Neural Angle Fields for Point Normal Estimation. In: Proceedings of the AAAI conference on artificial intelligence. 2023. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques. 1987. Tretschk E, Tewari A, Golyanik V, Zollhöfer M, Stoll C, Theobalt C. PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations. In: European conference on computer vision. 2020. Takikawa T, Litalien J, Yin K, Kreis K, Loop CT, Nowrouzezahrai D, et al. Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. In: 2021 IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 11353–62. Müller, 2022, Instant neural graphics primitives with a multiresolution hash encoding, ACM Trans Graph, 41, 1, 10.1145/3528223.3530127 Genova K, Cole F, Vlasic D, Sarna A, Freeman WT, Funkhouser TA. Learning Shape Templates With Structured Implicit Functions. In: 2019 IEEE/CVF international conference on computer vision. 2019, p. 7153–63. Han, 2020, Reconstructing 3D shapes from multiple sketches using direct shape optimization, IEEE Trans Image Process, 29, 8721, 10.1109/TIP.2020.3018865 Chen C, Liu Y-S, Han Z. Latent Partition Implicit with Surface Codes for 3D Representation. In: European conference on computer vision. 2022. Chao C, Han Z, Liu Y-S, Zwicker M. Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching. In: 2021 IEEE/CVF international conference on computer vision. 2021, p. 12446–57. Han, 2020, Reconstructing 3D shapes from multiple sketches using direct shape optimization, IEEE Trans Image Process, 29, 8721, 10.1109/TIP.2020.3018865 Darmon F, Bascle B, Devaux J-C, Monasse P, Aubry M. Improving neural implicit surfaces geometry with patch warping. In: 2022 IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 6250–9. Wen X, Zhou J, Liu Y-S, Su H, Dong Z, Han Z. 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. Fu, 2022 Wang, 2021, NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction Wang Y, Wu S, Öztireli AC, Sorkine-Hornung O. Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations. In: 2021 IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 374–83. Zhou, 2022 Li T, Wen X, Liu Y-S, Su H, Han Z. Learning Deep Implicit Functions for 3D Shapes with Dynamic Code Clouds. In: 2022 IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 12830–40. Oechsle M, Peng S, Geiger A. UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. In: 2021 IEEE/CVF international conference on computer vision. 2021, p. 5569–79. Lindell DB, Veen DV, Park JJ, Wetzstein G. Bacon: Band-limited Coordinate Networks for Multiscale Scene Representation. In: 2022 IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 16231–41. Wang, 2022 Jia, 2020 Michalkiewicz, 2019 Duan, 2020 Peng, 2020 Mi Z, Luo Y, Tao W. SSRNet: Scalable 3D Surface Reconstruction Network. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 967–76. Chen Z, Zhang H. Learning Implicit Fields for Generative Shape Modeling. In: 2019 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 5932–41. Chibane, 2020 Guillard B, Stella F, Fua P. MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field Networks. In: European conference on computer vision. 2021. Zhou, 2022, Learning consistency-aware unsigned distance functions progressively from raw point clouds Genova K, Cole F, Sud A, Sarna A, Funkhouser TA. Local Deep Implicit Functions for 3D Shape. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 4856–65. Lombardi S, Oswald MR, Pollefeys M. Scalable Point Cloud-based Reconstruction with Local Implicit Functions. In: 2020 international conference on 3D vision. 2020, p. 997–1007. Liu S, Guo H, Pan H, Wang P-S, Tong X, Liu Y. Deep Implicit Moving Least-Squares Functions for 3D Reconstruction. In: 2021 IEEE/CVF conference on computer vision and pattern recognition. 2021, p. 1788–97. Chibane J, Alldieck T, Pons-Moll G. Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 6968–79. Chen Z, Zhang Y, Genova K, Fanello S, Bouaziz S, Haene C, et al. Multiresolution Deep Implicit Functions for 3D Shape Representation. In: 2021 IEEE/CVF international conference on computer vision. 2021, p. 13067–76. Martel, 2021 Atzmon M, Lipman Y. SAL: Sign Agnostic Learning of Shapes From Raw Data. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 2562–71. Atzmon, 2020 Peng, 2021, Shape as points: A differentiable Poisson solver Zhou, 2013, Dense scene reconstruction with points of interest, ACM Trans Graph, 32, 1 Tatarchenko M, Richter SR, Ranftl R, Li Z, Koltun V, Brox T. What Do Single-View 3D Reconstruction Networks Learn?. In: 2019 IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 3400–9. Groueix, 2018 Hanocka, 2020, Point2Mesh: A self-prior for deformable meshes, ACM Trans Graph, 39, 126, 10.1145/3386569.3392415 Cignoni, 2008, MeshLab: An open-source mesh processing tool