Low level jet intensification by mineral dust aerosols

Annales Geophysicae - Tập 31 Số 4 - Trang 625-632
Omid Alizadeh1, Peyman Zawar‐Reza1, Andrew Sturman1
1Center for Atmospheric Research, University of Canterbury, Christchurch 8140, New Zealand

Tóm tắt

Abstract. Modification of the intensity of a low level jet (LLJ) and near-surface wind speed by mineral dust is important as it has implications for dust emission and its long-range transport. Using the Weather Research and Forecasting with Chemistry (WRF/Chem) regional model, it is shown that direct radiative forcing by mineral dust reduces temperature in the lower atmosphere, but increases it in the layers aloft. The surface cooling is shown to be associated with a reduction of turbulent kinetic energy (TKE) and hence vertical mixing of horizontal momentum. Changes in the vertical profile of temperature over the regions that are under the influence of a LLJ are shown to result in an intensification of the LLJ and near-surface wind speed, but a decrease of winds aloft. These changes in the wind speed profile differ from results of previous research which suggested a decrease of wind speed in the lower atmosphere and its increase in the upper boundary layer.

Từ khóa


Tài liệu tham khảo

Alizadeh Choobari, O., Zawar-Reza, P., and Sturman, A.: Feedback between windblown dust and planetary boundary-layer characteristics: {S}ensitivity to boundary and surface layer parameterizations, Atmos. Environ., 61, 294–304, https://doi.org/10.1016/j.atmosenv.2012.07.038, 2012.

Alizadeh Choobari, O., Zawar-Reza, P., and Sturman, A.: Mesoscale modelling of the "wind of 120 days" and associated mineral dust distribution over eastern Iran using WRF/Chem, J. Geophys. Res., submitted, 2013a.

Alizadeh Choobari, O., Zawar-Reza, P., and Sturman, A.: Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia, Tellus B, 65, https://doi.org/10.3402/tellusb.v65i0.19856, 2013b.

Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K.: Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210{P}b, J. Geophys. Res., 98, 20573–20586, 1993.

Cavazos Guerra, C. D. C.: Modelling the atmospheric controls and climate impact of mineral dust in {T}he {S}ahara {D}esert, Ph.D. thesis, University College London, 2011.

Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn S}tate-{NCAR {MM}5 modeling system. {P}art {I}: {M}odel implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.

Chin, M., Ginoux, P., Lucchesi, R., Huebert, B., Weber, R., Anderson, T., Masonis, S., Blomquist, B., Bandy, A., and Thornton, D.: A global aerosol model forecast for the {ACE}-{A}sia field experiment, J. Geophys. Res., 108, D23, https://doi.org/10.1029/2003JD003642, 2003.

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of {N}oah land surface model advances in the {N}ational {C}enters for {E}nvironmental {P}rediction operational mesoscale {E}ta model, J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.

Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J.: Sources and distributions of dust aerosols simulated with the GOCART model., J. Geophys. Res., 106, 20255–20273, https://doi.org/10.1029/2000JD000053, 2001.

Ginoux, P., Prospero, J. M., Torres, O., and Chin, M.: Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation., Environ. Model. Software, 19, 113–128, 2004.

Grell, G. A.: Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev., 121, 764–787, 1993.

Jacobson, M. Z. and Kaufman, Y. J.: Wind reduction by aerosol particles, Geophys. Res. Lett., 33, L24814, https://doi.org/10.1029/2006GL027838, 2006.

McCormick, R. A. and Ludwig, J. H.: Climate modification by atmospheric aerosols, Science (New York, N.Y.), 156, 1358–1359, 1967.

McMahon, H.: Recent survey and exploration in {S}eistan, Geogr. J., 28, 209–228, 1906.

Middelton, N. J.: A geography of dust storms over southwest {A}sia, J. Climatol., 6, 183–196, 1986.

Miller, R. L. and Tegen, I.: Climate response to soil dust aerosols, J. Climate, 11, 3247–3267, 1998.

Miller, R. L., Perlwitz, J., and Tegen, I.: Feedback upon dust emission by dust radiative forcing through the planetary boundary layer, J. Geophys. Res., 109, D24209, https://doi.org/10.1029/2004JD004912, 2004.

Miri, A., Ahmadi, A., Ghanbar, A., and A., M.: Dust storms impacts on air pollution and public health under hot and dry climate, Int. J. Energy Environ., 2, 101–105, 2007.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.

Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: {C}omparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.

Nakanishi, M. and Niino, H.: An Improved {M}ellor–{Y}amada Level-3 Model with Condensation Physics: {I}ts design and verification, Boundary-Layer Meteorol., 112, 1–31, https://doi.org/10.1007/s10546-005-9030-8, 2004.

Obukhov, A. M.: Turbulence in an atmosphere with a non-uniform temperature, Boundary-Layer Meteorol., 2, 7–29, 1971.

Petzold, A., Rasp, K., WeinZierl, B., Esselborn, M., Hamburger, T., Dornbrack, A., Kandler, K., Schutz, L., Knippertz, P., Fiebig, M., and Virkkula, A.: Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006, Tellus B, 61, 118–130, https://doi.org/10.1111/j.1600-0889.2008.00383.x, 2008.

Todd, M. C., Washington, R., Raghavan, S., Lizcano, G., and Knippertz, P.: Regional model simulations of the {B}odélé low-level jet of northern {C}had during the {B}odélé {D}ust {E}xperiment ({B}o{DE}x 2005), J. Climate, 21, 995–1012, https://doi.org/10.1175/2007JCLI1766.1, 2008.

Washington, R. and Todd, M. C.: Atmospheric controls on mineral dust emission from the {B}odélé {D}epression, {C}had: {T}he role of the low level jet, Geophys. Res. Lett., 32, L17701, https://doi.org/10.1029/2005GL023597, 2005.

Washington, R., Todd, M. C., Engelstaedter, S., Mbainayel, S., and Mitchell, F.: Dust and the low-level circulation over the {B}odélé {D}epression, {C}had: Observations from {B}o{DE}x 2005, J. Geophys. Res., 111, D03201, https://doi.org/10.1029/2005JD006502, 2006.

Weaver, C. J., Ginoux, P., Hsu, N. C., Chou, M. D., and Joiner, J.: Radiative forcing of S}aharan dust: {GOCART model simulations compared with ERBE data, J. Atmos. Sci., 59, 736–747, 2002.

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 41, 52–63, 1989.

Zhang, Y.: Online-coupled meteorology and chemistry models: history, current status, and outlook, Atmos. Chem. Phys., 8, 2895–2932, https://doi.org/10.5194/acp-8-2895-2008, 2008.

Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.