Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy

NeuroImage - Tập 45 - Trang 360-369 - 2009
Corey M. McCann1, Peter Waterman1,2, Jose-Luiz Figueiredo1,2, Elena Aikawa1, Ralph Weissleder1,2, John W. Chen1,2
1Center for Molecular Imaging Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
2Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA

Tài liệu tham khảo

Bindal, 1994, Prognostic significance of proteolytic enzymes in human brain tumors, J. Neuro-oncol., 22, 101, 10.1007/BF01052886 Blum, 2005, Dynamic imaging of protease activity with fluorescently quenched activity-based probes, Nat. Chem. Biol., 1, 203, 10.1038/nchembio728 Brat, 2004, Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population, Cancer Res., 64, 920, 10.1158/0008-5472.CAN-03-2073 Bremer, 2003, Optical-based molecular imaging: contrast agents and potential medical applications, Eur. Radiol., 13, 231, 10.1007/s00330-002-1610-0 Graves, 2005, Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography, J. Biomed. Opt., 10, 44019, 10.1117/1.1993427 Hintersteiner, 2005, In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe, Nat. Biotechnol., 23, 577, 10.1038/nbt1085 Izmailova, 2007, Use of molecular imaging to quantify response to IKK-2 inhibitor treatment in murine arthritis, Arthritis Rheum., 56, 117, 10.1002/art.22303 Jaffer, 2006, Molecular and cellular imaging of atherosclerosis: emerging applications, J. Am. Coll. Cardiol., 47, 1328, 10.1016/j.jacc.2006.01.029 Jiang, 2004, Tumor imaging by means of proteolytic activation of cell-penetrating peptides, Proc. Natl. Acad. Sci. U. S. A., 101, 17867, 10.1073/pnas.0408191101 Kak, 1988 Kelloff, 2005, The progress and promise of molecular imaging probes in oncologic drug development, Clin. Cancer Res., 11, 7967, 10.1158/1078-0432.CCR-05-1302 Koblinski, 2000, Unraveling the role of proteases in cancer, Clin. Chim. Acta, 291, 113, 10.1016/S0009-8981(99)00224-7 Lardinois, 2003, Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography, N. Engl. J. Med., 348, 2500, 10.1056/NEJMoa022136 Moffat, 2005, Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response, Proc. Natl. Acad. Sci. U. S. A., 102, 5524, 10.1073/pnas.0501532102 Monje, 2003, Inflammatory blockade restores adult hippocampal neurogenesis, Science, 302, 1760, 10.1126/science.1088417 Montet, 2005, Tomographic fluorescence mapping of tumor targets, Cancer Res., 65, 6330, 10.1158/0008-5472.CAN-05-0382 Nahrendorf, 2007, Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct, Circ. Res., 100, 1218, 10.1161/01.RES.0000265064.46075.31 Nesterov, 2005, In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers, Angew. Chem., Int. Ed. Engl., 44, 5452, 10.1002/anie.200500845 Ntziachristos, 2000, Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement, Proc. Natl. Acad. Sci. U. S. A., 97, 2767, 10.1073/pnas.040570597 Ntziachristos, 2002, In vivo tomographic imaging of near-infrared fluorescent probes, Mol. Imaging, 1, 82, 10.1162/153535002320162732 Ntziachristos, 2002, Would near-infrared fluorescence signals propagate through large human organs for clinical studies?, Opt. Lett., 27, 333, 10.1364/OL.27.000333 Ntziachristos, 2002, Fluorescence molecular tomography resolves protease activity in vivo, Nat. Med., 8, 757, 10.1038/nm729 Ntziachristos, 2003, Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging, Eur. Radiol., 13, 195, 10.1007/s00330-002-1524-x Ntziachristos, 2004, Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate, Proc. Natl. Acad. Sci. U. S. A., 101, 12294, 10.1073/pnas.0401137101 Ntziachristos, 2005, Looking and listening to light: the evolution of whole-body photonic imaging, Nat. Biotechnol., 23, 313, 10.1038/nbt1074 Otsuka, 2007, FDG-PET/CT for cancer management, J. Med. Investig., 54, 195, 10.2152/jmi.54.195 Schiff, 2007, Temozolomide and radiation in low-grade and anaplastic gliomas: temoradiation, Cancer Investig., 25, 776, 10.1080/07357900701509403 Shcherbo, 2007, Bright far-red fluorescent protein for whole-body imaging, Nat. Methods, 4, 741, 10.1038/nmeth1083 Sloane, 1996, Suicidal tumor proteases, Nat. Biotechnol., 14, 826, 10.1038/nbt0796-826b Trehin, 2006, Fluorescent nanoparticle uptake for brain tumor visualization, Neoplasia, 8, 302, 10.1593/neo.05751 Vasiljeva, 2006, Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer, Cancer Res., 66, 5242, 10.1158/0008-5472.CAN-05-4463 Veit-Haibach, 2006, Diagnostic accuracy of colorectal cancer staging with whole-body PET/CT colonography, Jama, 296, 2590, 10.1001/jama.296.21.2590 von Wallbrunn, 2007, In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography, Eur. J. Nucl. Med. Mol. Imaging, 34, 745, 10.1007/s00259-006-0269-1 Weber, 2008, Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning, Nat. Clin. Pract. Oncol., 5, 160, 10.1038/ncponc1041 Weissleder, 2003, Shedding light onto live molecular targets, Nat. Med., 9, 123, 10.1038/nm0103-123 Weissleder, 1999, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. Biotechnol., 17, 375, 10.1038/7933 Zacharakis, 2005, Volumetric tomography of fluorescent proteins through small animals in vivo, Proc. Natl. Acad. Sci. U. S. A., 102, 18252, 10.1073/pnas.0504628102