Transition from hormonal to nonhormonal regulation as exemplified by seed dormancy release and germination triggering
Tóm tắt
It is generally believed that seed dormancy release is terminated by germination and that this process is controlled by phytohormones. Most attention was paid to gibberellins (GAs) because treatment with GAs is most frequently applied for seed dormancy breaking. The review characterizes the hormonal regulation of seed dormancy and its release, as exemplified by arabidopsis seeds possessing non-deep physiological dormancy. Dormancy release occurs under the influence of low temperature and/or illumination with red light. Two main trends are typical of this process: (1) a decrease in ABA content and blocking of signal transduction from ABA, and (2) GA synthesis and activation of GA signaling pathway. Dormancy release ends with the GA-induced syntheses of some proteins, enzymes in particular, required for the start of germination. Quiescent seeds are capable of realizing the germination program without hormonal induction, due to nothing but seed hydration. In imbibing seeds, the triggering role of water lies in the successive activation of basic metabolic systems after attaining the water content thresholds characteristic of these systems and in preparing cells of embryo axial organs for germination. Thus, seed dormancy release is controlled by phytohormones, whereas subsequent germination manifesting itself as the initiation of cell elongation in embryo axes is controlled by water inflow.
Tài liệu tham khảo
Bewley, J.D., Seed Germination and Dormancy, Plant Cell, 1997, vol. 9, pp. 1055–1066.
Finch-Savage, W.E. and Leubner-Metzger, G., Seed Dormancy and the Control of Germination, New Phytol., 2006, vol. 171, pp. 501–523.
Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J., Molecular Networks Regulating Arabidopsis Seed Maturation, After-Ripening Dormancy and Germination, New Phytol., 2008, vol. 179, pp. 33–54.
Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C., Molecular Aspects of Seed Dormancy, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 387–415.
Bentsik, L. and Koorneef, M., Seed Dormancy and Germination, Arabidopsis Book (BioOne Online Journal), 2008, vol. 6, p. e0119.
Nikolaeva, M.G., Razumova, M.V., and Gladkova, V.N., Spravochnik po prorashchivaniyu pokoyashchikhsya semyan (Handbook for Germination of Dormant Seeds), Leningrad: Nauka, 1987.
Sponsel, V.M., The Localization, Metabolism and Biological Activity of Gibberellins in Maturing and Germinating Seeds of Pisum sativum, cv. Progress no. 9, Planta, 1983, vol. 159, pp. 454–468.
Sponsel, V.M., Gibberellin Biosynthesis and Metabolism, Plant Hormones and Their Role in Plant Growth and Development, Davies, P.J, Ed., Dordrecht: Martinus Nijhoff, 1987, pp. 43–75.
Nikolaeva, M.G., Seed Dormancy, Fiziologiya semyan (Seed Physiology), Prokof’ev, A.A., Ed., Moscow: Nauka, 1982, pp. 125–183.
Baskin, J.M. and Baskin, C.C., A Classification System for Seed Dormancy, Seed Sci. Res., 2004, vol. 14, pp. 1–16.
Baskin, J.M. and Baskin, C.C., Some Considerations for Adoption of Nikolaeva’s Formula System into Seed Dormancy Classification, Seed Sci. Res., 2008, vol. 18, pp. 131–137.
Rodríguez-Gacio, M.C., Matilla-Vazquez, M.A., and Matilla, A.J., Seed Dormancy and ABA Signalling. The Breakthrough Goes On, Plant Signal Behav., 2009, vol. 4, pp. 1035–1048.
Melcher, K., Ng, L.-M., Zhou, X.E., Soon, F.-F., Xu, Y., Suino-Powell, K.M., Park, S.-Y., Weiner, J.J., Fujii, H., Chinnusamy, V., Kovach, A., Li, J., Wang, Y., Li, J., Peterson, F.C., Jensen, D.R., Yong, E.-L., Volkman, B.F., Cutler, S.R., Zhu, J.-K., and Xu, H.E., A Gate-Latch-Lock Mechanism for Hormone Signalling by Abscisic Acid Receptors, Nature, 2009, vol. 462, pp. 602–608.
Miyazono, K.-I., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.-J., Asano, A., Miyauchi, Y., Takahashi, M., Zhi, Y., Fujita, Y., Yoshida, T., Kodaira, K., Yamaguchi-Shinozaki, K., and Tanokura, M., Structural Basis of Abscisic Acid Signaling, Nature, 2009, vol. 462, pp. 609–614.
Nakashma, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyana, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling Are Essential for the Control of Seed Development and Dormancy, Plant Cell Physiol., 2009, vol. 50, p. 1345–1363.
Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K., In Vitro Reconstitution of an Abscisic Acid Signalling Pathway, Nature, 2009, vol. 462, pp. 660–664.
Lee, S., Cheng, H., King, K.E., Wang, W., He, Y., Hussain, A., Lo, J., Harberd, N.P., and Peng, J., Gibberellin Regulates Arabidopsis Seed Germination via RGL2 a GAI/RGA-Like Gene Whose Expression Is Up-Regulated Following Imbibition, Gene Dev., 2002, vol. 16, pp. 646–658.
Seo, M., Hanada, A., Kuwahara, A., Endo, A., Okamoto, M., Yamauchi, Y., North, H., Marion-Poll, A., Sun, T.P., Koshiba, T., and Nambara, E., Regulation of Hormone Metabolism in Arabidopsis Seeds: Phytochrome Regulation of Abscisic Acid Metabolism, Plant J., 2006, vol. 48, pp. 354–356.
Millar, A.A., Jacobson, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B., and Gubler, F., Seed Dormancy and ABA Metabolism in Arabidopsis and Barley: Role of ABA 8’-Hydroxylase, Plant J., 2006, vol. 45, pp. 942–954.
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T., and Nambara, E., CYP707A1 and CYP707A2 Which Encode Abscisic Acid 8’-Hydroxylases Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis, Plant Physiol., 2006, vol. 141, pp. 97–107.
Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, Y., Kamiya, Y., and Yamaguchi, S., Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination, Plant Cell, 2003, vol. 15, pp. 1591–1604.
Bassel, G.W., Mullen, R.T., and Bewley, J.D., ABI3 Expression Ceases Following but Not during Germination of Tomato and Arabidopsis Seeds, J. Exp. Bot., 2006, vol. 57, pp. 1291–1297.
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S., Activation of Gibberellin Biosynthesis and Response Pathways by Low Temperature during Imbibition of Arabidopsis thaliana Seeds, Plant Cell, 2004, vol. 16, pp. 367–378.
Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M., and Furuya, M., Action Spectra for Phytochrome A- and B-Specific Photoinduction of Seed Germination in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8129–8133.
Yamaguchi, S., Kamiya, Y., and Sun, T.-P., Distinct Cell-Specific Expression Patterns of Early and Late Gibberellin Biosynthetic Genes during Arabidopsis Seed Germination, Plant J., 2001, vol. 28, pp. 443–454.
Yamaguchi, S., Smith, M.W., Brown, R.G.S., Kamiya, Y., and Sun, T.-P., Phytochrome Regulation and Differential Expression of Gibberellin 3-βHydroxylase Genes in Germinating Arabidopsis Seeds, Plant Cell, 1998, vol. 10, pp. 2115–2126.
Itoh, H., Matsuoka, M., and Steber, C.M., A Role for the Ubiquitin-26S-Proteasome Pathway in Gibberellin Signaling, Trends Plant Sci., 2003, vol. 8, pp. 492–497.
Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J., and Job, D., Proteomics of Arabidopsis Seed Germination. A Comparative Study of Wild-Type and Gibberellin-Deficient Seeds, Plant Physiol., 2002, vol. 129, pp. 823–837.
Feurtado, J.A., Ambrose, S.J., Cutler, A.J., Ross, A.R.S., Abrams, S.R., and Kermode, A.R., Dormancy Termination of Western White Pine [Pinus monticola Dougl. ex D. Don] Seeds Is Associated with Changes in Abscisic Acid Metabolism, Planta, 2004, vol. 218, pp. 630–639.
Liu, Y. and Zhang, J., Rapid Accumulation of NO Regulates ABA Catabolism and Seed Dormancy during Imbibition in Arabidopsis, Plant Signal Behav., 2009, vol. 4, pp. 905–907.
Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.-P., Kamiya, Y., Nambara, E., and Truong, H.-N., The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy, Plant Physiol., 2009, vol. 149, pp. 949–960.
Liu, Y., Ye, N., Liu, R., Chen, M., and Zhang, J., H2O2 Mediates the Regulation of ABA Catabolism and GA Biosynthesis in Arabidopsis Seed Dormancy and Germination, J. Exp. Bot., 2010, vol. 61, pp. 2979–2990.
Nelson, D.C., Riseborough, J.-A., Flematti, G.R., Stevens, J., Ghsalberti, E.L., Dixon, K.W., and Smith, S.M., Karrikins Discovered in Smoke Trigger Arabidopsis Seed Germination by a Mechanism Requiring Gibberellic Acid Synthesis and Light, Plant Physiol., 2009, vol. 149, pp. 863–873.
Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J., Interactions between Abscisic Acid and Ethylene Signaling Cascades, Plant Cell, 2000, vol. 12, pp. 1103–1115.
Oracz, K., El-Maarouf-Bouteau, H., Bogatek, R., Corbineau, F., and Bailly, C., Release of Sunflower Seed Dormancy by Cyanide Cross-Talk with Ethylene Signaling Pathway, J. Exp. Bot., 2008, vol. 59, pp. 2241–2251.
Obroucheva, N.V. and Antipova, O.V., Physiology of the Initiation of Seed Germination, Russ. J. Plant Physiol., 1997, vol. 44, pp. 250–264.
Obroucheva, N.V., Seed Germination: A Guide to the Early Stages, Leiden: Backhuys, 1999.
Kulieva, L.K., Obroucheva, N.V., and Prokof’ev, A.A., Physiological Maturity of Developing Cotton Seeds, Sov. Plant Physiol., 1984, vol. 31, pp. 732–736.
Obendorf, R.L. and Wettlaufer, S.H., Precocious Germination during In Vitro Growth of Soybean Seeds, Plant Physiol., 1984, vol. 76, pp. 1023–1028.
Garcia-Martinez, J.L., Sponsel, V.M., and Gaskin, P., Gibberellins in Developing Fruits of Pisum sativum, cv. Alaska: Studies on Their Role in Pod Growth and Seed Development, Planta, 1987, vol. 170, pp. 130–137.
Nadeau, C.D., Ozga, J.A., Kurepin, L.V., Jin, A., Pharis, R.P., and Reinecke, D.M., Tissue-Specific Regulation of Gibberellin Biosynthesis in Developing Pea Seeds, Plant Physiol., 2011, vol. 156, pp. 897–912.
Schneider, G. and Schlieman, W., Gibberellin Conjugates: An Overview, Plant Growth Regul., 1994, vol. 15, pp. 247–260.
Obroucheva, N.V. and Antipova, O.V., Common Physiological Mechanisms Prepare Seeds with Different Dormancy Types for Germination, Russ. J. Plant Physiol., 1999, vol. 46, pp. 363–369.
Obroucheva, N.V. and Antipova, O.V., Preparation and Initiation of Growth in Axial Organs of Germinating Quiescent Seeds: 2. Initiation of “Acid Growth” in the Axial Organs of Broad Bean Seeds, Russ. J. Plant Physiol., 1994, vol. 41, pp. 391–395.
Malerba, M. and Bianchetti, R., 14-3-3 Protein-Activated and Autoinhibited Forms of Plasma Membrane H+-ATFase, Biochem. Biophys. Res. Commun., 2001, vol. 286, pp. 984–990.
Sharova, E.I., Kletochnaya stenka rastenii (Plant Cell Wall), St. Petersburg: St. Petersburg Gos. Univ., 2004.
Lange, T., Koppler, J., Fischer, A., Frisse, A., Padeffke, T., Schmidtke, S., and Lange, M.J.P., Gibberellin Biosynthesis in Developing Pumpkin Seedlings, Plant Physiol., 2005, vol. 139, pp. 213–223.
Taylorson, R.B. and Hendricks, S.B., Rehydration of Phytochrome in Imbibing Seeds of Amaranthus retroflexus L., Plant Physiol., 1972, vol. 49, pp. 663–665.
Jensen, M., Moisture Content Controls the Effectiveness of Dormancy Breakage in Abies nordmanniana (Steven) Spach Seeds, Basic and Applied Aspects of Seed Biology, Ellis, R.H., Black, M., Murdoch, A.J., Hong, T.D., Eds., Dordrecht: Kluwer, 1997, pp. 181–190.
Derkx, M.P.M., Pretreatment at Controlled Seed Moisture Content as an Effective Means to Break Dormancy in Tree Seeds, Dormancy in Plants: From Whole Plant Behaviour to Cellular Control, Viemont, J.D. and Crabbe, J., Eds., Wallingford: CABI, 2000, pp. 69–85.