The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite
Tóm tắt
The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth’s radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave–particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, “chorus burst” and “EMIC burst.” We also input raw waveform data into the software-type wave–particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our PWE observation strategy and provide some initial results.
Tài liệu tham khảo
Angelopoulos V (2008) The THEMIS mission. Space Sci Rev. https://doi.org/10.1007/s11214-008-9336-1
Asamura K et al (2018) Low-energy particle experiments—ion analyzer (LEPi) onboard the ERG (Arase) satellite. Earth Planets Space. https://doi.org/10.1186/s40623-018-0846-0
Baker DN et al (2014) An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature 515:531–534. https://doi.org/10.1038/nature13956
Breneman AW et al (2015) Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss. Nature 523:193–195. https://doi.org/10.1038/nature14515
Burch JL et al (2016) Magnetospheric multiscale overview and science objectives. Space Sci Rev. https://doi.org/10.1007/s11214-015-0164-9
Cattell C et al (2008) Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys Res Lett 35:L01105. https://doi.org/10.1029/2007GL032009
European cooperation for space standardization (ECSS-E-ST-50-12C) (2008) Space engineering, SpaceWire-Links, nodes, routers and networks, European Space Agency
European cooperation for space standardization (ECSS-E-ST-50-51C) (2010) Space engineering, SpaceWire protocol integration, European Space Agency
European cooperation for space standardization (ECSS-E-ST-50-52C) (2010) Space engineering, SpaceWire-Remote memory access protocol, European Space Agency
Fraser BJ, Nguyen TS (2001) Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J Atmos Sol Terr Phys 63:1225–1247
Fukuhara H et al (2009) A new instrument for the study of wave-particle interactions in space: one-chip Wave-Particle Interaction Analyzer. Earth Planets Space 61:BF03353183. https://doi.org/10.1186/BF03353183
Fukunishi H et al (1990) Magnetic field observations on the Akebono (EXOS-D) satellite. J Geomagn Geoelectr 42:385–409
Hikishima M et al (2018) Data processing in the Software-type wave-particle interaction analyzer on board the Arase satellite. Earth Planets Space. https://doi.org/10.1186/s40623-018-0856-y
Horne RB et al (2005) Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res 110:A03225. https://doi.org/10.1029/2004JA010811
Horne RB et al (2007) Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett 34:L17107. https://doi.org/10.1029/2007GL030267
Jordanova VK et al (2008) Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J Geophys Res 113:A00A10. https://doi.org/10.1029/2008JA013239
Kasaba Y et al (2010) The plasma wave investigation (PWI) onboard the BepiColombo/MMO: first measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planet Space Sci 58:238–278
Kasaba Y et al (2017) Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard ARASE: specifications and Initial Evaluation results. Earth Planets Space. https://doi.org/10.1186/s40623-017-0760-x
Kasahara Y et al (1992) Ion cyclotron emissions observed by the satellite Akebono in the vicinity of the magnetic equator. Radio Sci 27:347–362
Kasahara Y et al (1994) Propagation characteristics of the ELF emissions observed by the satellite Akebono in the magnetic equatorial region. Radio Sci 29:751–767
Kasahara Y et al (2004) Whistler mode chorus observed around the plasmapause during magnetic storms. In: Frontiers of magnetospheric physics, COSPAR Colloquia Series. Elsevier, Amsterdam, vol 16, pp 228–234
Kasahara Y et al (2009) Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm “recovery” phase. Geophys Res Lett 36:L01106. https://doi.org/10.1029/2008GL036454
Katoh Y, Omura Y (2007) Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys Res Lett 34:L03102. https://doi.org/10.1029/2006GL028594
Katoh Y, Omura Y (2016) Electron hybrid code simulation of whistler-mode chorus generation with real parameters in the Earth’s inner magnetosphere. Earth Planets Space 68:192. https://doi.org/10.1186/s40623-016-0568-0
Katoh Y et al (2013) Significance of wave-particle interaction analyzer for direct measurements of nonlinear wave-particle interactions. Ann Geophys 31:503–512. https://doi.org/10.5194/angeo-31-503-2013
Katoh Y et al (2018) Software-type wave-particle interaction analyzer on board the ARASE satellite. Earth Planets Space. https://doi.org/10.1186/s40623-017-0771-7
Kazama et al (2017) Low-energy particle experiments - electron analyzer (LEPe) onboard the Arase spacecraft. Earth Planets Space. https://doi.org/10.1186/s40623-017-0748-6
Kimura et al (1990) VLF observation by the Akebono (EXOS-D) satellite. J Geomagn Geoelectr 42:459–478
Kitahara M, Katoh Y (2016) Method for direct detection of pitch angle scattering of energetic electrons caused by whistler mode chorus emissions. J Geophys Res Space Phys 121:5137–5148. https://doi.org/10.1002/2015JA021902
Kletzing C et al (2013) The electric and magnetic field instrument suite and integrated science and integrated science (EMFISIS) on RBSP. Space Sci Rev 179:127–181. https://doi.org/10.1007/s11214-013-9993-6
Kubota Y et al (2015) Relativistic electron precipitation induced by EMIC-triggered emissions in a dipole magnetosphere. J Geophys Res Space Phys 120:4384–4399. https://doi.org/10.1002/2015JA021017
Kumamoto A et al (2018) High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft. Earth Planets Space. https://doi.org/10.1186/s40623-018-0854-0
Kuroda Y et al (2011) Development of processor for both space and commercial use: development of SOI-SoC. Aeronaut Space Sci Jpn 59:149–154. https://doi.org/10.14822/kjsass.59.688_149 (in Japanese)
Laakso H et al (1990) Magnetosonic waves above f c (H+) at geostationary orbit: GEOS 2 results. J Geophys Res 95(A7):10609–10621. https://doi.org/10.1029/JA095iA07p10609
Matsuda S et al (2014a) Electromagnetic ion cyclotron waves suggesting minor ion existence in the inner magnetosphere observed by the Akebono satellite. J Geophys Res Space Phys 119:4348–4357. https://doi.org/10.1002/2013JA019370
Matsuda S et al (2014b) High-altitude M/Q = 2 ion cyclotron whistlers in the inner magnetosphere observed by the Akebono Satellite. Geophys Res Lett 41:3759–3765. https://doi.org/10.1002/2014GL060459
Matsuda S et al (2015) M/Q = 2 ion distribution in the inner magnetosphere estimated from ion cyclotron whistler waves observed by the Akebono satellite. J Geophys Res Space Phys 120:2783–2795. https://doi.org/10.1002/2014JA020972
Matsuda S et al (2016) Variation in crossover frequency of EMIC waves in plasmasphere estimated from ion cyclotron whistler waves observed by Van Allen Probe A. Geophys Res Lett 43:28–34. https://doi.org/10.1002/2015GL066893
Matsuda S et al (2018) Onboard Software of Plasma Wave Experiment aboard Arase: instrument Management and Signal Processing of Waveform Capture/Onboard Frequency Analyzer. Earth Planets Space. https://doi.org/10.1186/s40623-018-0838-0
Matsumoto H et al (1994) Plasma wave observations with GEOTAIL spacecraft. J Geomagn Geoelectr 46:59–95. https://doi.org/10.5636/jgg.46.59
Matsuoka A et al (2018) The ARASE (ERG) magnetic field investigation. Earth Planets Space. https://doi.org/10.1186/s40623-018-0800-1
Mauk BH et al (2013) Science objectives and rationale for the radiation belt storm probes mission. Space Sci Rev 179:3–27. https://doi.org/10.1007/s11214-012-9908-y
Meredith NP et al (2008) Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere. J Geophys Res 113:A06213. https://doi.org/10.1029/2007JA012975
Min K et al (2012) Global distribution of EMIC waves derived from THEMIS observations. J Geophys Res 117:A05219. https://doi.org/10.1029/2012JA017515
Miyoshi Y et al (2012) The Energization and Radiation in Geospace (ERG) project, in dynamics of the earth’s radiation belts and inner magnetosphere In: Summers D, Mann IR, Baker DN, Schulz M (eds), pp 103–116. https://doi.org/10.1029/2012gm001304
Miyoshi et al. (2017) Geospace exploration project: Arase (ERG). In: IOP Conference Series: Journal of Physics: Conference Series, vol 869. https://doi.org/10.1088/1742-6596/869/1/012095
Miyoshi Y et al (2003) Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. J Geophys Res 108(A1):1004. https://doi.org/10.1029/2001JA007542
Miyoshi Y et al (2008) Precipitation of radiation belt electrons by EMIC waves, observed from ground and space. Geophys Res Lett 35:L23101. https://doi.org/10.1029/2008GL035727
Miyoshi Y et al (2013) High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophys Res Lett 40:4520–4525. https://doi.org/10.1002/grl.50916
Nakamura S et al (2015) Subpacket structures in EMIC rising tone emissions observed by the THEMIS probes. J Geophys Res Space Phys 120:7318–7330. https://doi.org/10.1002/2014JA020764
Nishimura Y et al (2007) Evolution of ring current and radiation belt particles under the influence of storm-time electric fields. J Geophys Res 112:A06241. https://doi.org/10.1029/2006JA012177
Omura Y (2014) Theory and simulations of nonlinear wave-particle interactions in planetary radiation belts. Radio Sci Bull 349:52–58
Omura Y et al (2008) Theory and simulation of the generation of whistler-mode chorus. J Geophys Res 113:A04223. https://doi.org/10.1029/2007JA012622
Omura Y et al (2015) Formation process of relativistic electron flux through interaction with chorus emissions in the Earth’s inner magnetosphere. J Geophys Res Space Phys 120:9545–9562. https://doi.org/10.1002/2015JA021563
Ozaki M et al (2014) Current-sensitive CMOS preamplifier for investigating space plasma waves by magnetic search coils. IEEE Sens J 14:421–429
Ozaki M et al (2016) Development of an ASIC preamplifier for electromagnetic sensor probes for monitoring space electromagnetic environments. Earth Planets Space. https://doi.org/10.1186/s40623-016-0470-9
Ozaki M et al (2018) Magnetic Search Coil (MSC) of Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite. Earth Planets Space. https://doi.org/10.1186/s40623-018-0837-1
Paulikas GA, Blake JB (1979) Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, Quantitative Modeling of Magnetospheric Processes, 21. Geophys, Monograph Series
Reeves GD et al (2003) Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett. https://doi.org/10.1029/2002GL016513
Sakaguchi K et al (2013) Akebono Observations of EMIC Waves in the Slot Region of the Radiation Belts. Geophys Res Lett. https://doi.org/10.1002/2013GL058258
Santolik O et al (2004) Systematic analysis of equatorial noise below the lower hybrid frequency. Ann Geophys 22:2587–2595. https://doi.org/10.5194/angeo-22-2587-2004
Santolik O et al (2016) Propagation of equatorial noise to low altitudes: decoupling from the magnetosonic mode. Geophys Res Lett. https://doi.org/10.1002/2016GL069582
Shiokawa et al (2017) Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth Planets Space. https://doi.org/10.1186/s40623-017-0745-9
Shoji M, Omura Y (2014) Spectrum characteristics of electromagnetic ion cyclotron triggered emissions and associated energetic proton dynamics. J Geophys Res Space Phys 119:3480–3489. https://doi.org/10.1002/2013JA019695
Shprits YY et al (2016) Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts. Nat Commun. https://doi.org/10.1038/ncomms12883
Summers D et al (1998) Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res 103(A9):20487–20500. https://doi.org/10.1029/98JA01740
Takashima T et al (2018) Design of mission network system with SpaceWire for scientific payloads onboard the ARASE spacecraft. Earth Planets Space. https://doi.org/10.1186/s40623-018-0839-z
Thaller SA et al (2015) Van Allen Probes investigation of the large-scale duskward electric field and its role in ring current formation and plasmasphere erosion in the 1 June 2013 storm. J Geophys Res Space Phys 120:4531–4543. https://doi.org/10.1002/2014JA020875
Thorne RM (2010) Radiation belt dynamics: the importance of wave-particle interactions. Geophys Res Lett 37:L22107. https://doi.org/10.1029/2010GL044990
Turner DL et al (2013) On the storm-time evolution of relativistic electron phase space density in Earth’s outer radiation belt. J Geophys Res Space Phys 118:2196–2212. https://doi.org/10.1002/jgra.50151
Usanova ME et al (2012) THEMIS observations of electromagnetic ion cyclotron wave occurrence: dependence on AE, SYMH, and solar wind dynamic pressure. J Geophys Res 117:A10218. https://doi.org/10.1029/2012JA018049
Wygant JR et al (2013) The electric field and waves instruments on the radiation belt storm probes mission. Space Sci Rev 179:183–220. https://doi.org/10.1007/s11214-013-0013-7
Young DT et al (1981) Wave-particle interactions near ΩHe+ observed on GEOS 1 and 2 1. Propagation of ion cyclotron waves in He+-rich plasma. J Geophys Res 86(A8):6755–6772. https://doi.org/10.1029/JA086iA08p06755