Statistics of projective measurement on a quantum probe as a witness of noncommutativity of algebra of a probed system

Quantum Information Processing - Tập 21 - Trang 1-22 - 2022
Fattah Sakuldee1,2, Łukasz Cywiński2
1The International Centre for Theory of Quantum Technologies, University of Gdańsk, Gdańsk, Poland
2Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Tóm tắt

We consider a quantum probe P undergoing pure dephasing due to its interaction with a quantum system S. The dynamics of P is then described by a well-defined sub-algebra of operators of S,  i.e. the “accessible” algebra on S from the point of view of P. We consider sequences of n measurements on P,  and investigate the relationship between Kolmogorov consistency of probabilities of obtaining sequences of results with various n,  and commutativity of the accessible algebra. For a finite-dimensional S we find conditions under which the Kolmogorov consistency of measurement on P,  given that the state of S can be arbitrarily prepared, is equivalent to the commutativity of this algebra. These allow us to describe witnesses of nonclassicality (understood here as noncommutativity) of part of S that affects the probe. For P being a qubit, the witness is particularly simple: observation of breaking of Kolmogorov consistency of sequential measurements on a qubit coupled to S means that the accessible algebra of S is noncommutative.

Tài liệu tham khảo

von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, USA (1955) Alicki, R., Piani, M., Ryn, N.V.: Quantumness witnesses. J. Phys. Mathemat. Theor 41(49), 495303 (2008). https://doi.org/10.1088/1751-8113/41/49/495303 Fröhlich, J., Schubnel, B.: Quantum Probability Theory and the Foundations of Quantum Mechanics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), pp. 131–193. https://doi.org/10.1007/978-3-662-46422-9_7 Aremua, I., Baloïtcha, E., Hounkonnou, M.N., Sodoga, K.: On Hilbert-Schmidt operator formulation of noncommutative quantum mechanics (Springer International Publishing, Cham, 2018), pp. 61–118. https://doi.org/10.1007/978-3-319-97175-9_3 Griffiths, D.J.: Introduction to quantum mechanics, vol. 2 (Prentice Hall New Jersey, 1995) Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics (Addison-Wesley Publishing Company, Inc, 1994) Bell, J.S., et al.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964) Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012). https://doi.org/10.1103/RevModPhys.84.1655 Alicki, R., Ryn, N.V.: A simple test of quantumness for a single system. J. Phys. Mathemat. Theor. 41(6), 062001 (2008). https://doi.org/10.1088/1751-8113/41/6/062001 Facchi, P., Pascazio, S., Vedral, V., Yuasa, K.: Quantumness and entanglement witnesses. J. Phys. Mathemat. Theor. 45(10), 105302 (2012). https://doi.org/10.1088/1751-8113/45/10/105302 Facchi, P., Ferro, L., Marmo, G., Pascazio, S.: Defining quantumness via the Jordan product. J. Phys. Mathemat. Theor. 47(3), 035301 (2013). https://doi.org/10.1088/1751-8113/47/3/035301 Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2 (John Wiley & Sons, 2008) Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016). https://doi.org/10.1103/RevModPhys.88.021002 Shrapnel, S., Costa, F., Milburn, G.: Updating the Born rule. New J. Phys. 20(5), 053010 (2018). https://doi.org/10.1088/1367-2630/aabe12 Milz, S., Egloff, D., Taranto, P., Theurer, T., Plenio, M.B., Smirne, A., Huelga, S.F.: When is a non-Markovian quantum process classical? Phys. Rev. X 10, 041049 (2020). https://doi.org/10.1103/PhysRevX.10.041049 Strasberg, P., Díaz, M.G.: Classical quantum stochastic processes. Phys. Rev. A 100, 022120 (2019) Taranto, P., Pollock, F.A., Milz, S., Tomamichel, M., Modi, K.: Quantum Markov order. Phys. Rev. Lett. 122, 140401 (2019). https://doi.org/10.1103/PhysRevLett.122.140401 Taranto, P., Milz, S., Pollock, F.A., Modi, K.: Structure of quantum stochastic processes with finite Markov order. Phys. Rev. A 99, 042108 (2019). https://doi.org/10.1103/PhysRevA.99.042108 Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Non-Markovian quantum processes: Complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018). https://doi.org/10.1103/PhysRevA.97.012127 Accardi, L.: Topics in quantum probability. Phys. Rep. 77(3), 169–192 (1981). https://doi.org/10.1016/0370-1573(81)90070-3 Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic processes. Publ. Res. Inst. Mathemat. Sci. 18(1), 97–133 (1982). https://doi.org/10.2977/prims/1195184017 Smirne, A., Nitsche, T., Egloff, D., Barkhofen, S., De, S., Dhand, I., Silberhorn, C., Huelga, S.F., Plenio, M.B.: Experimental control of the degree of non-classicality via quantum coherence. Quantum Sci. Technol. 5(4), 04LT01 (2020). https://doi.org/10.1088/2058-9565/aba039 Milz, S., Sakuldee, F., Pollock, F.A., Modi, K.: Kolmogorov extension theorem for (quantum) causal modelling and general probabilistic theories. Quantum 4, 255 (2020). https://doi.org/10.22331/q-2020-04-20-255 Sakuldee, F., Milz, S., Pollock, F.A., Modi, K.: Non-Markovian quantum control as coherent stochastic trajectories. J. Phys. Mathemat. Theor 51(41), 414014 (2018). https://doi.org/10.1088/1751-8121/aabb1e Degen, C.L.F., Reinhard, P.: Cappellaro, Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002 Szańkowski, P., Ramon, G., Krzywda, J., Kwiatkowski, D., Cywiński, Ł.: Environmental noise spectroscopy with qubits subjected to dynamical decoupling. J. Phys. Condens. Matter 29(33), 333001 (2017). https://doi.org/10.1088/1361-648X/aa7648 Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004). https://doi.org/10.1103/PhysRevA.69.032314 Fink, T., Bluhm, H.: Noise spectroscopy using correlations of single-shot qubit readout. Phys. Rev. Lett. 110, 010403 (2013). https://doi.org/10.1103/PhysRevLett.110.010403 Bechtold, A., Li, F., Müller, K., Simmet, T., Ardelt, P.L., Finley, J.J., Sinitsyn, N.A.: Quantum effects in higher-order correlators of a quantum-dot spin qubit. Phys. Rev. Lett. 117, 027402 (2016). https://doi.org/10.1103/PhysRevLett.117.027402 Zwick, A., Álvarez, G.A., Kurizki, G.: Maximizing information on the environment by dynamically controlled qubit probes. Phys. Rev. Appl. 5, 014007 (2016). https://doi.org/10.1103/PhysRevApplied.5.014007 Sakuldee, F., Cywiński, Ł.: Spectroscopy of classical environmental noise with a qubit subjected to projective measurements. Phys. Rev. A 101, 012314 (2020). https://doi.org/10.1103/PhysRevA.101.012314 Sakuldee, F., Cywiński, Ł.: Relationship between subjecting the qubit to dynamical decoupling and to a sequence of projective measurements. Phys. Rev. A 101, 042329 (2020). https://doi.org/10.1103/PhysRevA.101.042329 Do, H., Lovecchio, C., Mastroserio, I., Fabbri, N., Cataliotti, F.S., Gherardini, S., Müller, M.M., Pozza, N.D., Caruso, F.: Experimental proof of quantum Zeno-assisted noise sensing. New J. Phys. 21, 113056 (2019). https://doi.org/10.1088/1367-2630/ab5740 Müller, M.M., Gherardini, S., Pozza, N.D., Caruso, F.: Noise sensing via stochastic quantum Zeno. Phys. Lett. A 384, 126244 (2020). https://doi.org/10.1016/j.physleta.2020.126244 Thirring, W.: The Mathematical Formulation of Quantum Mechanics (Springer Vienna, 1981), pp. 9–83. https://doi.org/10.1007/978-3-7091-7523-1_2 Żurek, W.H.: Decoherence, einselection, and the quantum origins of the classical 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715 Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010) Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/CBO9780511813948 Białończyk, M., Jamiołkowski, A., Życzkowski, K.: Application of Shemesh theorem to quantum channels. J. Mathemat. Phys. 59(10), 102204 (2018). https://doi.org/10.1063/1.5027616 Mendl, C.B., Wolf, M.M.: Unital quantum channels - convex structure and revivals of Birkoff’s theorem. Commun. Mathemat. Phys. 289(3), 1057–1086 (2009). https://doi.org/10.1007/s00220-009-0824-2 Życzkowski, K., Kus, M.: Random unitary matrices. J. Phys. Mathemat. General 27(12), 4235–4245 (1994). https://doi.org/10.1088/0305-4470/27/12/028 Audenaert, K.M.R., Scheel, S.: On random unitary channels. New J. Phys. 10(2), 023011 (2008). https://doi.org/10.1088/1367-2630/10/2/023011 Arias, A., Gheondea, A., Gudder, S.: Fixed points of quantum operations. J. Mathemat. Phys. 43(12), 5872–5881 (2002). https://doi.org/10.1063/1.1519669 Heinosaari, T., Wolf, M.M.: Nondisturbing quantum measurements. J. Mathemat. Phys. 51(9), 092–201 (2010). https://doi.org/10.1063/1.3480658 Sakuldee, F. , Taranto, P., Milz, S.: Connecting commutativity and classicality for multi-time quantum processes. arXiv:2204.11698 (2022). https://arxiv.org/abs/2204.11698 Bandyopadhyay, Boykin, Roychowdhury, Vatan.: A new proof for the existence of mutually unbiased bases. Algorithmica 34(4), 512–528 (2002). https://doi.org/10.1007/s00453-002-0980-7 Bengtsson, I.: Three ways to look at mutually unbiased bases. AIP Conf. Proc. 889(1), 40–51 (2007). https://doi.org/10.1063/1.2713445 Halliwell, J.J., Mawby, C.: Fine’s theorem for Leggett-Garg tests with an arbitrary number of measurement times. Phys. Rev. A 100, 042,103 (2019). https://doi.org/10.1103/PhysRevA.100.042103 Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Scientific Reports 2(1) (2012). https://doi.org/10.1038/srep00885 Schild, G., Emary, C.: Maximum violations of the quantum-witness equality. Phys. Rev. A 92, 032101 (2015). https://doi.org/10.1103/PhysRevA.92.032101 Kübler, O., Zeh, H.D.: Dynamics of quantum correlations. Ann. Phys. 76, 405 (1973). https://doi.org/10.1016/0003-4916(73)90040-7 Żurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715 Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin/Heidelberg (2007) Eisert, J., Plenio, M.B.: Quantum and classical correlations in quantum Brownian motion. Phys. Rev. Lett. 89, 137902 (2002). https://doi.org/10.1103/PhysRevLett.89.137902 Pernice, A., Strunz, W.T.: Decoherence and the nature of system-environment correlations. Phys. Rev. A 84, 062121 (2011). https://doi.org/10.1103/PhysRevA.84.062121 Roszak, K., Cywiński, Ł.: Characterization and measurement of qubit-environment-entanglement generation during pure dephasing. Phys. Rev. A 92, 032310 (2015). https://doi.org/10.1103/PhysRevA.92.032310 Roszak, K.: Criteria for system-environment entanglement generation for systems of any size in pure-dephasing evolutions. Phys. Rev. A 98, 052344 (2018). https://doi.org/10.1103/PhysRevA.98.052344 Roszak, K., Cywiński, Ł.: Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions and the resulting consequences. Phys. Rev. A 97, 012306 (2018). https://doi.org/10.1103/PhysRevA.97.012306 Rzepkowski, B., Roszak, K.: A scheme for direct detection of qubit–environment entanglement generated during qubit pure dephasing. Quantum Info. Process. 20, 1 (2020). https://doi.org/10.1007/s11128-020-02935-8 Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733 (1998). https://doi.org/10.1103/PhysRevA.58.2733 Szańkowski, P., Cywiński, Ł.: Noise representations of open system dynamics. Sci. Rep. 10, 22189 (2020). https://doi.org/10.1038/s41598-020-78079-7 Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985). https://doi.org/10.1103/PhysRevLett.54.857 Emary, C., Lambert, N., Nori, F.: Leggett-Garg inequalities. Rep. Progress Phys. 77(3), 039501 (2014). https://doi.org/10.1088/0034-4885/77/3/039501 Kofler, J., Brukner, Č.: Condition for macroscopic realism beyond the Leggett-Garg inequalities. Phys. Rev. A 87, 052115 (2013). https://doi.org/10.1103/PhysRevA.87.052115 Uola, R., Vitagliano, G., Budroni, C.: Leggett-Garg macrorealism and the quantum nondisturbance conditions. Phys. Rev. A 100, 042117 (2019). https://doi.org/10.1103/PhysRevA.100.042117 Dobrovitski, V.V., Fuchs, G.D., Falk, A.L., Santori, C., Awschalom, D.D.: Quantum control over single spins in diamond. Ann. Rev. Cond. Mat. Phys. 4, 23 (2013). https://doi.org/10.1146/annurev-conmatphys-030212-184238 Rondin, L., Tetienne, J.P., Hingant, T., Roch, J.F., Maletinsky, P., Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014). https://doi.org/10.1088/0034-4885/77/5/056503 Sakuldee, F., Cywiński, Ł.: Characterization of a quasistatic environment with a qubit. Phys. Rev. A 99, 062113 (2019). https://doi.org/10.1103/PhysRevA.99.062113