Gas-Phase Volume Oxidation of Uranium Mononitride

Radiochemistry - Tập 61 - Trang 146-155 - 2019
S. A. Kulyukhin1, Yu. M. Nevolin2, A. V. Gordeev1, A. A. Bessonov1
1Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
2Chemical Department, Moscow State University, Moscow, Russia

Tóm tắt

Gas-phase volume oxidation (voloxidation) of UN in various atmospheres was studied. Oxidation of compact UN samples under the conditions characteristic of the voloxidation of the oxide fuel leads to the formation of uranium oxides. The use of the oxygen-containing atmosphere leads to the predominant formation of U3O8, and the use of water vapor, to the formation of UO2. The major gaseous nitrogen-containing conversion product is, apparently, N2. The use of the alternative oxidizing atmosphere based on NOx gases does not allow the conversion to be performed at a lower temperature. In this case, both UO3 and UO2(NO3)2 hydrates are formed. The maximal degree of the UN conversion to water-soluble compounds, equal to ∼80%, is reached at the process temperature of ∼565 K.

Tài liệu tham khảo

Johnson, J.A., Studies of reaction process for voloxidation methods, PhD Dissertation, Univ. of Tennessee, 2013. Volk, V.I., Veselov, S.N., Dvoeglazov, K.N., et al., At. Energy, 2016, vol. 119, no. 5, pp. 339–343. Metalidi, M.M., Shapovalov, S.V., Ismailov, R.V., et al., Radiochemistry, 2015, vol. 57, no. 1, pp. 98–102. Collins, E.D., Delcul, G.D., Hunt, R.D., et al., Patent US 8 574 523, 2013. Kotel’nikov, R.B., Bashlykov, S.N., Kashtanov, A.I., and Men’shikova, T.S., Vysokotemperaturnoe yadernoe toplivo (High-Temperature Nuclear Fuel), Moscow: Atomizdat, 1978. Antill, J.E. and Myatt, B.L., Corros. Sci., 1966, vol. 6, no. 9, pp. 17–23. Dell, M. and Wheeler, V.J., J. Nucl. Mater., 1967, vol. 21, no. 3, pp. 328–336. Dell, R.M., Wheeler, V.J., and McIver, E.J., Trans. Faraday Soc., 1966, vol. 62, pp. 3591–3606. Dell, R.M., Wheeler, V.J., and Bridger, N.J., Trans. Faraday Soc., 1967, vol. 63, pp. 1286–1294. Allbutt, M. and Dell, R., J. Nucl. Mater., 1967, vol. 24, no. 1, pp. 1–20. Ohmichi, T. and Honda, T., J. Nucl. Sci. Technol., 1968, vol. 5, no. 11, pp. 600–602. Sole, M.J. and van der Walt, C.M., Acta Metall., 1968, vol. 16, no. 4, pp. 501–510. Ferris, L.M., J. Inorg. Nucl. Chem., 1968, vol. 30, no. 10, pp. 2661–2669. Sugihara, S. and Imoto, S., J. Nucl. Sci. Technol., 1969, vol. 6, no. 5, pp. 237–242. Paljevic, M. and Despotovic, Z., J. Nucl. Mater., 1975, vol. 57, no. 3, pp. 253–257. Rama Rao, G.A., Mukerjee, S.K., Vaidya, V.N., et al., J. Nucl. Mater., 1991, vol. 185, no. 2, pp. 231–241. Dehadraya, J.V., Mukerjee, S.K., Rama Rao, G.A., et al., J. Alloys Compd., 1997, vol. 257, nos. 1–2, pp. 313–321. Rama Rao, G.A., Jayanthi, K., Mukerjee, S.K., et al., Thermochim. Acta, 1990, vol. 159, pp. 349–356. Sunder, S. and Miller, N.H., J. Alloys Compd., 1998, vols. 271–273, pp. 568–572. Liu, K., Luo, L., Luo, L., et al., Appl. Surf. Sci., 2013, vol. 280, pp. 268–272. Lu, L., Li, F., Hu, Y., et al., J. Nucl. Mater., 2016, vol. 480, pp. 189–194. Johnson, K., Strom, V., Wallenius, J., and Lopes, D.A., J. Nucl. Sci. Technol., 2017, vol. 54, no. 3, pp. 280–286. JCPDS—Int. Centre for Diffraction Data, PDF 03-065-5985, UN. JCPDS—Int. Centre for Diffraction Data, PDF 03-065-0285, UO2. Wastewater and Biosolids Analysis Manual. Digestion and Selected Methods for Determining Metals, Minerals, and Other Related Parameters: Report 49 088-88, Ames: Hach, 1999, method 8038. Kulyukhin, S.A., Nevolin, Yu.M., Mizina, L.V., et al., Radiochemistry, 2016, vol. 58, no. 1, pp. 13–29. IR Database, IR-Spektrensammlung der ANSYCO GmbH, https://doi.org/www.ansyco.de (visited Febr. 28, 2018). NIST Chemistry WebBook, NIST Standard Reference Database no. 69, https://doi.org/webbook.nist.gov/chemistry/ (visited Febr. 28, 2018). JCPDS—Int. Centre for Diffraction Data, PDF 01-074-2101, α-U3O8. JCPDS—Int. Centre for Diffraction Data, PDF 01-073-1712, α-U2N3. Gallagher, J.S. and Kell, G.S., NBS/NRC Steam Tables, 1984. Sethna, P.P., Downing, H.D., Pinkley, L.W., and Williams, D., J. Opt. Soc. Am., 1978, vol. 68, no. 4, pp. 429–431. Kulyukhin, S.A., Nevolin, Yu.M., and Gordeev, A.V., Radiochemistry, 2017, vol. 59, no. 3, pp. 247–258. Johnson, J.A., Rawn, C.J., Spencer, B.B., et al., J. Nucl. Mater., 2017, vol. 490, pp. 211–215. Hoekstra, H.R. and Siegel, S., J. Inorg. Nucl. Chem., 1961, vol. 18, pp. 154–165. JCPDS—Int. Centre for Diffraction Data, PDF 00-010-0309, UO3·0.8H2O. JCPDS—Int. Centre for Diffraction Data, PDF 00-030-1402, UO2(OH)2. JCPDS—Int. Centre for Diffraction Data, PDF 00-018-1429, ε-UO3. JCPDS—Int. Centre for Diffraction Data, PDF 00-027-0937, UO2(NO3)2·3H2O. JCPDS—Int. Centre for Diffraction Data, PDF 01-077-0121, UO2(NO3)2·6H2O. Ondrejcin, R.S. and Garret, T.P., J. Phys. Chem., 1961, vol. 65, pp. 470–473. Katz, J.J. and Rabinowitch, E., The Chemistry of Uranium, New York: McGraw-Hill, 1951. Lister, A.J. and Richardson, R.J., The Preparation of Uranium Trioxide by Thermal Decomposition of Uranyl Nitrate: AERE C/R 1874, Harwell: Atomic Energy Research Establishment, 1954. Galkin, N.P., Sudarikov, B.N., Veryatin, U.D., et al., Tekhnologiya urana (Uranium Technology), Moscow: Atomizdat, 1964. Schaal, G. and Faron, R., US Patent 5 628 048, May 6, 1997.