ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
Tài liệu tham khảo
Chadwick, 2006, ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nuclear Data Sheets, 107, 2931, 10.1016/j.nds.2006.11.001
MacFarlane, 2010, Methods for Processing ENDF/B-VII with NJOY, Nuclear Data Sheets, 111, 2739, 10.1016/j.nds.2010.11.001
Young, 2007, Evaluation of Neutron Reactions for ENDF/B-VII: 232–241U and 239Pu, Nuclear Data Sheets, 108, 2589, 10.1016/j.nds.2007.11.002
Chadwick, 2007, Yttrium ENDF/B-VII Data from Theory and LANSCE/GEANIE Measurements and Covariances Estimated using Bayesian and Monte-Carlo Methods, Nuclear Data Sheets, 108, 2742, 10.1016/j.nds.2007.11.004
Chadwick, 2007, Evaluated Iridium, Yttrium, and Thulium Cross Sections and Integral Validation Against Critical Assembly and Bethe Sphere Measurements, Nuclear Data Sheets, 108, 2716, 10.1016/j.nds.2007.11.005
van der Marck, 2006, Benchmarking ENDF/B-VII.0, Nuclear Data Sheets, 107, 3061, 10.1016/j.nds.2006.11.002
Carlson, 2009, International Evaluation of Neutron Cross Section Standards, Nuclear Data Sheets, 110, 3215, 10.1016/j.nds.2009.11.001
Kahler, 2011, ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments, Nuclear Data Sheets, 112, 2997, 10.1016/j.nds.2011.11.003
Shibata, 2011, JENDL-4.0: A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol., 48, 1, 10.3327/jnst.48.1
Chiba, 2011, JENDL-4.0 Benchmarking for Fission Reactor Applications, J. Nucl. Sci. Technol., 48, 172, 10.3327/jnst.48.172
Koning, 2011, Status of the JEFF nuclear data library, J. Korean Phys. Soc., 59, 1057, 10.3938/jkps.59.1057
A. Ignatyuk, (2009) [private communication].
Alekseev, 2009, 242mAm and 245Cm neutron fission cross sections, Atomic Energy, 106, 133, 10.1007/s10512-009-9142-1
Dean, 2007, Validation of important fission product evaluations through CERES integral benchmarks, EDP Sciences, 2, 829
M. B. Chadwick, “Evaluation of Fission Product Yields from Fission Spectrum n+239Pu Including a Meta Analysis of Benchmark Data,” Los Alamos Technical Report, LA-UR-09-4446 (2009).
Chadwick, 2009, AIP Conf. Proc., 1175, 71, 10.1063/1.3258268
Chadwick, 2010, Fission Product Yields from Fission Spectrum n+239Pu for ENDF/B-VII.1, Nuclear Data Sheets, 111, 2923, 10.1016/j.nds.2010.11.003
D. R. Nethaway, “PROPHET Fission Yields,” Nuclear Chemistry Division Memorandum LJW-45-85-189, Lawrence Livermore National Laboratory (1985).
R. W. Mills, “Fission Product Yield Evaluation,” Thesis, University of Birmingham, Uinited Kingdom (1995).
M. F. James, R. W. Mills, and D. W. Weaver, “UKFY2 Part 1: Methods and Outline,” AEAT report, AEA-TRS-1015 (1991).
M. F. James, R. W. Mills, and D. W. Weaver, “UKFY2 Part 2: Tables of Measured Data,” AEAT report, AEA-TRS-1018 (1991).
M. F. James, R. W. Mills, and D. W. Weaver, “UKFY2 Part 3: Tables of Discrepant Data,” AEAT report, AEA-TRS-1019 (1991).
Laurec, 2010, Fission Product Yields of 233U, 235U, 238U, and 239Pu in Fields of Thermal Neutrons, Fission Neutrons, and 14.7 MeV Neutrons, Nuclear Data Sheets, 111, 2965, 10.1016/j.nds.2010.11.004
M. Herman (editor), “ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII,” Tech. Rep. BNL-NCS-44945-05-Rev, Document ENDF-102, Brookhaven National Laboratory, June 2010.
X-5 Monte Carlo Team, “MCNP – A General N-Particle Transport Code,” Version 5 – Volume I: Overview and Theory, Los Alamos National Laboratory Report LA-UR-03-1987, (April, 2003).
Pritychenko, 2006, Nuclear Reaction and Structure Data Services of the National Nuclear Data Center, Ann. Nucl. Energy, 33, 390, 10.1016/j.anucene.2005.10.004
Smith, 2011, Evaluated Nuclear Data Covariance: From ENDF/B-VII.0 to ENDF/B-VII.1, Nuclear Data Sheets, 112, 3037, 10.1016/j.nds.2011.11.004
Talou, 2011, Quantification of Uncertainties for Evaluated Neutron-Induced Reactions on Actinides in the Fast Energy Range, Nuclear Data Sheets, 112, 3075, 10.1016/j.nds.2011.11.005
L. Leal et al., “ORNL Resolved Resonance Covariance Generation in ENDF/B-VII.1,” Nuclear Data Sheets, submitted.
Hoblit, 2011, Neutron Cross Section Covariances for Structural Materials and Fission Products, Nuclear Data Sheets, 112, 3075, 10.1016/j.nds.2011.11.006
Trkov, 2011, Covariances of evaluated nuclear cross-section data for 232Th, 180,182,183,184,186W and 55Mn, Nuclear Data Sheets, 112, 3098, 10.1016/j.nds.2011.11.007
M. Salvatores et al., “Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations,” Report NEA/WPEC-26 (NEA, Paris 2008).
Little, 2008, Low-fidelity Covariance Project, Nuclear Data Sheets, 109, 2828, 10.1016/j.nds.2008.11.018
P. Obložinský et al., P. Talou et al., “Neutron Cross Section Covariance Library AFCI-1.2,” Brookhaven National Laboratory Report BNL-90897-2009, Brookhaven National Laboratory & Los Alamos National Laboratory, September 2009.
M. Herman et al., P. Talou et al., “Neutron Cross Section Covariance Library AFCI-2.0,” Brookhaven National Laboratory Report BNL-94830-2011, Brookhaven National Laboratory & Los Alamos National Laboratory, under preparation.
Pritychenko, 2008, Sigma: Web Retrieval Interface for Nuclear Reaction Data, Nuclear Data Sheets, 109, 2822, 10.1016/j.nds.2008.11.017
Mughabghab, 2006
Dillmann, 2006, KADoNiS - The Karlsruhe Astro Phys. Database of Nucleosynthesis in Stars, AIP Conf. Proc., 819, 123, 10.1063/1.2187846
Fröhner, 1994, On Uncertainty Evaluation and Fluctuations in the Resolved and Unresolved Resonance Regions, Proc. Nucl. Data Conf. 1994, 2, 597
H. Derrien et al., “Neutron Resonance Parameters and Covariance Matrix of 239Pu”, Oak Ridge National Laboratory Report ORNL/TM-2008/123, September 2008.
N. Jarmie et al., “Elastic Scattering of tritons by He-4,” Los Alamos Report LA-8492 (1980).
R.A. Hardekopf et al., “4He(t,t)4He elastic scattering: analyzing powers and differential cross sections,” Los Alamos report LA-6188 (1977).
Macklin, 1979, 6Li(n,α)3H cross section from 70 to 3000 keV from the 235U(n,fission) calibration of athin glass scintillator, Nuclear Science and Engineering, 71, 205, 10.13182/NSE79-A20412
Drosg, 1994, Calibration of a Li-Glass Detector for Neutron Energies Above 50 keV by the 1H(t,n)3He Reaction, Nuclear Instruments and Methods B, 94, 319, 10.1016/0168-583X(94)95371-6
M. Devlin, T.N. Taddeucci, G.M. Hale, R.C. Haight, and J.M. OʼDonnell, “Differential Cross Section Measurements for the 6Li(n,t)a Reaction in the few MeV Region,” Proc. 13th Intl. Symp. on Capture Gamma-Ray Spectroscopy and Related Topics, Cologne, Germany, 25–29 August 2008, p. 215.
Knitter, 1983, Angular Distribution Measurements for the Reaction 6Li(n, t)4He, Nuclear Science and Engineering, 83, 229, 10.13182/NSE83-A18216
Overley, 1974, 6Li(n,t)4He Differential Cross Sections between 0.1 and 1.8 MeV, Nuclear Physics A, 221, 573, 10.1016/0375-9474(74)90484-9
H. Condé, T. Andersson, L. Nilsson, and C. Nordborg, “Studies of the 6Li(n,t)4He Reaction,” Proc. Int. Conf. on Nucl. Data for Science and Technology, Antwerp, Belgium, 6–10 September 1982, p. 447.
Bartle, 1979, Total Cross Sections for the 6Li(n, a)3H Reaction between 2 and 10 MeV, Nuclear Physics A, 330, 1, 10.1016/0375-9474(79)90532-3
Danon, 2009, Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 to 900 keV, Nuclear Science and Engineering, 161, 321, 10.13182/NSE161-321
Leal, 2003, R-Matrix Evaluation of 19F Neutron Cross Section up to 1 MeV, Transaction of the American Nuclear Society, 494
R. O. Sayer, K. H. Guber, L. C. Leal, N. M. Larson, and T. Rauscher, “R-Matrix Evaluation of Cl Neutron Cross Section up to 1.2 MeV,” Oak Ridge National Laboratory Report ORNL/TM-2003/50, March, 2003.
Sayer, 2006, R-matrix analysis of Cl neutron cross sections up to 1.2 MeV, Phys. Rev. C, 73, 044603, 10.1103/PhysRevC.73.044603
Guber, 2005, Neutron cross section measurements at ORELA for improved nuclear data and their application, Rad. Protection Dosimetry, 116, 579, 10.1093/rpd/nci100
Guber, 2005, New neutron cross-section measurements at ORELA and their application in nuclear criticality calculations, Nucl. Inst. Meth. Phys. Res. B, 241, 218, 10.1016/j.nimb.2005.07.083
W. M. Good, J. A. Harvey, and N. W. Hill, “Neutron Total Cross Sections in the KeV Energy Range,” Oak Ridge National Laboratory Report ORNL-4937, 198 (1973).
J. A. Harvey, [private communication].
S. Cierjacks, P. Forti, D. Kopsch, L. Kropp, J. Nebe, and H. Unseld, “High Resolution Total Neutron Cross Sections for Na, Cl, K, V, Mn and Co between 0.5 and 30 MeV”, Kemforschungszentrum Karlsruhe KFK-1000, 2. Supplement, EUR-3963e (1969).
Singh, 1974, Neutron Resonance Spectroscopy: Chlorine, Phys. Rev. C, 10, 2138, 10.1103/PhysRevC.10.2138
E. G. Joki, L. G. Miller, and J. E. Evans, “Total Neutron Cross Sections of Na, K and Rb in the 0.03- to 10-eV region,” Phillips Petroleum Report IDO-16276, (1955).
Stupegia, 1968, Neutron capture between 5 keV and 3 MeV, J. Nucl. Energ., 22, 267, 10.1016/0022-3107(68)90001-4
Shibata, 2002, Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3, J. Nucl. Sci. Technol., 39, 1125, 10.3327/jnst.39.1125
Dashdorj, 2007, Effect of preequilibrium spin distribution on 48Ti+n cross sections, Phys. Rev. C, 75, 054612, 10.1103/PhysRevC.75.054612
L. Leal, K. Guber, G. Arbanas, D. Wiarda, and P. Koehler, “Resonance Evaluation of 48Ti Including Covariance for Criticality Safety Applications,” International Conference on Nuclear Criticality, September 19–22, 2011, Edinburgh, Scotland.
International Network of Nuclear Reaction Data Centres (NRDC), “Compilation of experimental nuclear reaction data (EXFOR/CSISRS)”, (Available from http://www-nds.iaea.org/exfor/, http://www.nndc.bnl.gov/exfor/).
T. Kawano, “Optical and Hauser-Feshbach Statistical Model Code, CoH ver. 3.1 (Ariel),” [unpublished] (2010).
A. Langsdorf et al., Argonne National Laboratory Report ANL-5569 (Rev.) (1961).
Barnard, 1974, Neutron Scattering from Titanium; Compound and Direct Effects, Nucl. Phys. A, 229, 189, 10.1016/0375-9474(74)90782-9
P. Guenther, D. Havel, A. Smith, and J. Whalen, “Titanium I: Fast Neutron Cross Section Measurements,” Argonne National Laboratory Report ANL/NDM-31 (1977).
A. B. Smith, D. L. Smith, P. T. Guenther, J. W. Meadows, R. D. Lawson, R. J. Howerton, T. Djemil, and B. J. Micklich, “Neutronic Evaluated Nuclear-Data File for Vanadium,” Argonne National Laboratory Report ANL/NDM-105 (1988).
A. B. Smith, P. T. Guenther, R. D. Lawson, “Fast-Neutron Elastic Scattering from Elemental Vanadium,” Argonne National Laboratory Report ANL/NDM-106 (1988).
Smith, 1999, Cross-sections for hydrogen production from vanadium in a fusion neutron environment, Fusion Eng. Des., 47, 61, 10.1016/S0920-3796(99)00075-7
Rochman, 2006, New evaluation of 51V(n, np + pn) and 51V(n, t) cross sections for the ENDF/B-VII library, Fusion Eng. Des., 81, 2109, 10.1016/j.fusengdes.2005.12.002
Dudey, 1969, Fast neutron capture by vanadium and titanium, J. Nucl. Energy, 23, 443, 10.1016/0022-3107(69)90014-8
Sahota, 1986, Neutron capture cross-sections by comparative γ-activation, Ann. Nucl. Eenergy, 13, 287, 10.1016/0306-4549(86)90055-1
Shibata, 1989, Calculation of Neutron-Induced Reaction Cross Section of Manganese-55, J. Nucl. Sci. & Tech. (Japan), 26, 955, 10.3327/jnst.26.955
K.I. Zolotarev, “Evaluation of cross-section data from threshold to 40–60 MeV for specific neutron reactions important for neutron dosimetry applications,” Technical report INDC(NDS)-0546, IAEA, Vienna, Austria (2009).
Guber, 2008, New neutron cross section measurements from ORELA and new resonance parameter evaluations, 403
G. Aerts et al., “GELINA measurements (unpublished)”, (2006) [private communication].
Garg, 1978, Neutron capture cross section of manganese, Phys. Rev. C, 18, 2079, 10.1103/PhysRevC.18.2079
Perrot, 2003, Precise Validation of Database (n,γ) Cross Sections Using a Lead-Slowing-Down Spectrometer and Simulation from 0.1 eV to 30 keV: Methodology and Data for a Few Elements, Nucl. Sc. & Eng., 144, 142, 10.13182/NSE03-A2349
H. Derrien, L. C. Leal, N. M. Larson, K. Guber, D. Wiarda, and G. Arbanas, “Neutron resonance parameters of 55Mn from Reich–Moore analysis of recent experimental neutron transmission and capture cross sections,” International Conference on the Physics of Reactors “Nuclear Power: A Sustainable Resource” Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14–19, 2008.
Coté, 1964, Total Neutron Cross Section of Manganese, Phys. Rev., 134, B1047, 10.1103/PhysRev.134.B1047
Rainwater, 1947, Slow neutron velocity spectrometer studies. I. Cd, Ag, Sb, Ir, Mn, Phys. Rev., 71, 65, 10.1103/PhysRev.71.65
F. Widder, “Neutron capture cross section measurements in the energy region from 0.01 to 10 electron volts”, Eidg. Inst. Reaktorforsch. Wuerenlingen Reports No. 217, Switzerland (1975).
Kolotov, 2003, An electronic database with compilation of k0 and related data for NAA, J. Radioan. Nucl. Chem., 257, 501, 10.1023/A:1025420027189
J. Harvey et al., “ORELA measurements”, EXFOR number 13770 (1980).
Herman, 2007, EMPIRE, Nuclear Reaction Code System for Data Evaluation, Nuclear Data Sheets, 108, 2655, 10.1016/j.nds.2007.11.003
Muir
Muir, 2008, Integration International Standards Evaluation into a Global Data Assessment, Nucl. Data Sheets, 109, 2874, 10.1016/j.nds.2008.11.026
D. Wiarda, S. Goluoglu, M. E. Dunn, N. M. Greene, and L. M. Petrie, “AMPX-6: A Modular Code System for Processing ENDF/B Evaluations,” to be published as an ORNL/TM Report.
Capote, 2009, RIPL – Reference Input Parameter library for Calculation of Nuclear Reaction and Nuclear Data Evaluation, Nuclear Data Sheets, 110, 3107, 10.1016/j.nds.2009.10.004
T. Belgya, O. Bersillon, R. Capote, T. Fukahori, Zhigang Ge, S. Goriely, M. Herman, A.V. Ignatyuk, S. Kailas, A. Koning, V. Plujko and P. Young, “Handbook for calculations of nuclear reaction data, Reference Input Parameter Library-2”, Tech. Rep. IAEA-TECDOC-1506, International Atomic Energy Agency, Vienna, Austria (2006) (Available from http://www-nds.iaea.org/RIPL-2/).
Raynal, 1972, Optical model and coupled-channel calculations in nuclear physics, 281
Raynal, 1997, ECIS96, 159
Hauser, 1952, The Inelastic Scattering of Neutrons, Phys. Rev., 87, 366, 10.1103/PhysRev.87.366
Hofmann, 1975, Direct reactions and Hauser-Feshbach theory, Ann. Phys., 90, 403, 10.1016/0003-4916(75)90005-6
A.I. Lashuk, A.I. Gonchar, and I.P. Sadokhin, “Gamma-quanta production cross-sections at inelastic scattering of the neutrons on the nuclei of reactor construction materials”, Vop. At. Nauki i Tekhn., Ser. Yadernye Konstanty, Issue.1, p.26 (1994). EXFOR number 41186001.
Leal, 2011, Evaluation of the Chromium Resonance Parameters Including Resonance Parameter Covariance, J. Korean Phys. Soc., 59, 1644, 10.3938/jkps.59.1644
N. M. Larson, “Updated Usersʼ Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes Equations,” ORNL/TM-9179/R7, 2007.
D. Wiarda and M. E. Dunn, “PUFF-IV: A Code for Processing ENDF Uncertainty Data into Multigroup Covariance Matrices,” Oak Ridge National Laboratory Report ORNL/TM-2006/147, UT-Battelle, LLC, October 2006.
H. Derrien, L. C. Leal, K. H. Guber, D. Wiarda, and G. Arbanas, “Re-evaluation of 58Ni and 60Ni resonance parameters in the neutron energy range thermal to 800 keV,” Wonder 2009 – 2nd International Workshop on Nuclear Data Evaluation for Reactor Applications, Cadarache, France, 2009.
Trbovich, 2005, Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments, AIP, 769, 949, 10.1063/1.1945161
Mughabghab, 1984
E.D. Arthur and C.A. Philis, “New Calculations of Neutron-Induced Cross Sections on Tungsten Isotopes”, Technical report LA-8630-PR, Los Alamos National Laboratory, NM, USA (1980).
E.D. Arthur, P.G. Young, A.B. Smith, C.A. Philis, Dec. 1980, “Evaluated nuclear data files of neutron induced reactions on tungsten isotopes”, Documentation of the Tungsten Evaluation for ENDF/B-V (MAT=1475,1476,1477,1478 MF=1 MT=451).
J. Frehaut, A. Bertin, R. Bois, and J. Jary, “Status of (n,2n) cross section measurements at Bruyères-le-Châtel” in Proc. Symp. on Neutron Cross Sections from 10–50 MeV, Upton, Long Island, U.S.A., May 12–14, 1980, Brookhaven Technical report BNL/NCS-51245, 399 (l980).
Chadwick, 1999, Cross-section evaluations to 150 MeV for accelerator-driven systems and implementation in MCNPX, Nucl. Sc. & Eng., 131, 293, 10.13182/NSE98-48
CSEWG-Collaboration, “Evaluated Nuclear Data File ENDF/B-VI.8” released in October 2001 (Available from http://www.nndc.bnl.gov/endf).
I. Kodeli, “Reflection on the present status of Tungsten cross sections based on the analysis of FNG and FNS Benchmark Experiments”, Technical report EFFDOC-1002, OECD/NEA, Paris (2007).
Kodeli, 2007, Validation of the IRDF-2002 Dosimetry Library, Nucl. Instr. Meth. in Phys. Res. A, 577, 664, 10.1016/j.nima.2007.04.120
Abfalterer, 2001, Measurement of neutron total cross sections up to 560 MeV, Phys. Rev. C, 63, 044608, 10.1103/PhysRevC.63.044608
Dietrich, 2003, Importance of isovector effects in reproducing total cross section differences, Phys. Rev. C, 67, 044606, 10.1103/PhysRevC.67.044606
Capote, 2008, Evaluation of tungsten isotopes in the fast neutron range including cross section covariance estimation, 689
Trkov, 2008, Evaluation of Tungsten Nuclear Reaction Data with Covariances, Nucl. Data Sheets, 109, 2905, 10.1016/j.nds.2008.11.032
Bersillon, 2006, International Reactor Dosimetry File 2002 (IRDF-2002), vol. 452
R. Capote, E.Sh. Soukhovitskii, J.M. Quesada, and S. Chiba, “Isospin dependent dispersive coupled channel optical model potential for tungsten isotopes”, presented at 11th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, June 12–16, 2006 (unpublished).
R. Capote, M. Sin and A. Trkov, “Modelling of nuclear data in the fast neutron region”, in NEMEA-3 Proceedings of the 3rd Workshop on Neutron Measurements, Evaluations and Applications, October 25–28, 2006 Borovets, Bulgaria, editor A.J. Plompen, EUR report 22794 EN, ISBN 978-92-79-06158-5, European Communities, 13 (2007).
Guenther, 1982, Fast-neutron total and scattering cross sections of 182W, 184W, and 186W, Phys. Rev. C, 26, 2433, 10.1103/PhysRevC.26.2433
Batistoni, 2004, Neutronics Benchmark Experiment on Tungsten, J. Nucl. Materials, 329–333, 683, 10.1016/j.jnucmat.2004.04.191
“ICSBEP 2006”, International Handbook of Evaluated Criticality Safety Benchmark Experiments, Technical Report NEA/NSC/DOC(95)03, NEA Nuclear Science Committee, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
Lampoudis, 2011, Neutron Total and Capture Cross Section of Tungsten Isotopes, J. Korean Physical Society, 59, 1860, 10.3938/jkps.59.1860
S. Kunieda, R.C. Haight, T. Kawano, M.B. Chadwick, T. Fukahori, and Y. Watanabe, “Measurement and Model Analysis of (n, xα) Cross Sections for Cr, Fe, 59Co and 58,59Ni from Threshold Energy to 150 MeV”, Los Alamos National Laboratory report, in preparation (2011).
Chiba, 2010, Evaluation of Neutron Nuclear Data on Arsenic-75 for JENDL-4, J. Nucl. Sci. Technol., 47, 40, 10.3327/jnst.47.40
F. Bazan, “(n, 2n) Cross-Section Measurements of Krypton and Xenon Isotopes,” LLNL Internal Report UCRL-53929 162 (1989).
A.J. Koning, S. Hilaire and M.C. Duijvestijn, “TALYS-1.0”, Proceedings of the International Conference on Nuclear Data for Science and Technology – ND2007, April 22–27, 2007, Nice, France (2008).
Koning, 2003, Local and Global Nucleon Optical Model from 1 keV to 200 MeV, Nucl. Phys. A, 713, 231, 10.1016/S0375-9474(02)01321-0
D.A. Brown et al., “2009 Release of the Evaluated Nuclear Data Library (ENDL2009),” LLNL Internal Report LLNL-TR-452511 (2009).
Kawano, 2000, Simultaneous Evaluation of Fission Cross Sections of Uranium and Plutonium Isotopes for JENDL-3.3, J. Nucl. Sci. Technol., 37, 327, 10.3327/jnst.37.327
K.I. Zolotarev, “Evaluation of cross-section data from threshold to 40 MeV for some neutron reactions important for fusion dosimetry applications,” International Atomic Energy Agency Report INDC(NDS)-0584, November 2010.
R. Capote, K.L. Zolotarev, V.G. Pronyaev, A. Trkov, “Updating and extending the IFDR-2002 Dosimetry Library,” to be published in the proceedings of the International Symposium on Reactor Dosimetry (ISDR-14), May 2011, Bretton Woods, USA.
E.D. Arthur, and C. Philis, “Applied nuclear data research and development: July 1–September 30, 1980,” Los Alamos National Laboratory Report LA-8630-PR (1980).
Bayhurst, 1975, Cross sections for (n,xn) reactions between 7.5 and 28 MeV, Phys. Rev. C, 12, 451, 10.1103/PhysRevC.12.451
Mughabghab, 1998, Nuclear level density and the effective nucleon mass, Phys. Rev. Lett., 81, 4083, 10.1103/PhysRevLett.81.4083
Mughabghab, 2011, What do s- and p-wave neutron average radiative widths reveal?, J. Korean Phys. Soc., 59, 821, 10.3938/jkps.59.821
S. F. Mughabghab, “Spin-orbit splitting of the 3p neutron single particle state: non-statistical effects in neutron radiative capture,” Brookhaven National Laboratory Report BNL-80311-2008-JA (2008).
S. Oh, J. Chang and S. F. Mughabghab, “Neutron cross section evaluations of fission products below the fast energy region,” Brookhaven National Laboratory Report BNL-NCS-67469 (2000).
Koester, 1987, Interaction of slow neutrons with the isotopes of molybdenum, Z. Phys. A, 326, 227
Furutaka, 2005, Cross Section of thermal neutron capture reaction by 99Tc, J. Nucl. Radiochem. Sciences, 6, 283, 10.14494/jnrs2000.6.3_283
Molnar, 2002, Partial and total thermal neutron capture cross section for non destructive assay and transmutation monitoring of 99Tc, Radiochim. Acta, 90, 479, 10.1524/ract.2002.90.8_2002.479
Mughabghab, 1981
Gunsing, 2000, Neutron resonance spectroscopy of 99Tc from 3 eV to 150 keV, Phys. Rev. C, 61, 054608, 10.1103/PhysRevC.61.054608
Lee, 2003, Neutron capture cross Section measurement of Rhodium in the energy region from 0.003 eV to 80 keV by linac time-of flight method, Nucl. Sci. Eng., 144, 94, 10.13182/NSE03-A2345
Brusegan, 2005, Neutron capture and transmission measurements on 103Rh down to thermal energies, AIP, 769, 953, 10.1063/1.1945162
De Corte, 2001, Evaluation of (n,γ) cross sections from k0-factors for radionuclides with a short half-life and/or a complex activation-decay scheme, J. Radioanalitical nucl. Chem., 248, 103, 10.1023/A:1010686310278
Nakajima, 1990, Neutron Resonances of 133Cs, Ann. Nuc. Energy, 17, 569, 10.1016/0306-4549(90)90047-H
R.E. Heft, “A consistent set of nuclear-parameter values for absolute instrumental neutron activation analysis,” Computers in Activation Analysis and Gamma-Ray Spectroscopy, Mayagues, Puerto Rico, 30 April – 4 May, 495 (1978).
Cabell, 1967, Mass spectrometric measurements of the neutron capture Cross sections of 142Nd, 143Nd, 144Nd, and 145Nd for reactor and Maxwellian neutrons, J. Inorg. Chem., 30, 897
Barry, 2006, Neutron transmission and capture measurements and resonance analysis of neodymium from 1 to 500 eV, Nuc. Sci. Eng., 153, 8, 10.13182/NSE06-A2590
J.A. Harvey, J. Halperin, N.W. Hill, R.L.Macklin, and S. Raman, “Parameters of the 203.4 eV resonance in 59Ni,” DOE/NDC-12/U, 231, April 1978.
Alpizar-Vicente, 2008, Neutron capture cross section of 62Ni at s-process energies, Phys. Rev. C, 77, 015806, 10.1103/PhysRevC.77.015806
Domingo-Pardo, 2009, s-Process nucleosynthesis in massive stars: new results on 60Fe, 62Ni and 64Ni, AIP, 978, 230, 10.1063/1.3087019
C. Lubitz, [private communication].
M.A. Lone, “Thermal-neutron capture cross section measurements,” Proc. Neutron Capture Gamma-Ray Spectroscopy and Related Topics 383 (1981), 7–11 September 1981 Grenoble, France.
Nakamura, 2007, Thermal neutron capture cross sections of zirconium-91 and zirconium-93 by prompt γ-ray spectroscopy, J. Nuc. Sci. Tech., 44, 21, 10.3327/jnst.44.21
S. F. Mughabghab, ”Uncertainty treatment in the unresolved energy region” Report to CSWEG meeting, Santa Fe, November 2010, available from http://www.nndc.bnl.gov/proceedings/2010csewgusndp/Tuesday/CSEWG/Mugabgab_SIGTOTAL.pdf.
E.Sh. Soukhovitskij, G.B. Morogovskij, S. Chiba, O. Iwamoto and T. Fukahori, “Physics and Numerical Methods of OPTMAN: A Coupled-channels Method Based on Soft-rotator Model for a Description of Collective Nuclear Structure and Excitations,” JAERI-Data/Code 2004-002 (March 2004).
M. Herman, P. Obložinský, C.M. Mattoon, M. Pigni, S. Hoblit, S.F. Mughabghab, A. Sonzogni, P. Talou, M.B. Chadwick, G.M. Hale, A.C. Kahler, T. Kawano, R.C. Little, P.G. Young, “COMMARA-2.0 Neutron Cross Section Covariance Library,” BNL-94830-2011 (2011).
R.D. Mosteller, R.E. Macfarlane, S. F. Mughabghab, and S.S. Kim, “Development and testing of a revised ENDF/B-VII capture cross section for 113Cd, Proceedings of PHYSOR-2008, contribution 088 (2008).
Y. Danon, R.C. Block, N. Francis, M. Lubert, F. Saglime, R. Bahran, D.P. Barry N.J. Drindak, J.G. Hoole, and G. Leinweber, “Cross Section Measurements and Analysis at Rensselaer,” Report to CSWEG meeting, November 2007 (unpublished).
Kopecky, 2009, The total cross section and resonance parameters for the 0.178 eV resonance of 113Cd, Nuc. Inst. Meth. B, 267, 2345, 10.1016/j.nimb.2009.04.010
Rauch, 1999, Giant absorption cross section of ultracold neutrons in gadolinium, Phys. Rev. Lett., 83, 4955, 10.1103/PhysRevLett.83.4955
Leinweber, 2006, Neutron capture and total cross section measurements and resonance parameters of gadolinium, Nucl. Sci. Eng., 154, 261, 10.13182/NSE05-64
Perret, 2009, Impact of new Gadolinium cross sections on reaction rate distributions in 10X10 BWR assemblies, Nucl. Sci. Eng., 163, 17, 10.13182/NSE08-55
Sin, 2006, Fission of light actinides: 232Th(n,f) and 231Pa(n,f) reactions, Phys. Rev. C, 74, 014608, 10.1103/PhysRevC.74.014608
R. Capote, L. Leal, Liu Ping, Liu Tingjin, P. Schillebeeckx, M. Sin, I. Sirakov, and A. Trkov, “Evaluated Nuclear Data for Nuclides within the Thorium-Uranium Fuel Cycle”, Technical report STI/PUB/1435, ISBN 978-92-0-101010-0, International Atomic Energy Agency, Vienna, Austria (2010). (Available from http://www-nds.iaea.org/reports-new/tecdocs/).
R. Capote Noy, V. Maslov, E. Bauge, T. Ohsawa, A. Vorobyev, M.B. Chadwick, and S. Oberstedt “Summary Report of the Consultantsʼ Meeting on Prompt Fission Neutron Spectra of Major Actinides”, Vienna, Austria 24–27 November 2008, Report INDC(NDS)-282, International Atomic Energy Agency, Vienna, Austria (2008). (Available from http://www-nds.iaea.org/reports-new/indc-reports/indc-nds/indc-nds-0541.pdf).
R. Capote Noy, “Summary Report of the First Research Coordination Meeting on Prompt Fission Neutron Spectra of Major Actinides”, IAEA Headquarters Vienna, Austria, 6–9 April 2010, Report INDC(NDS)-282, International Atomic Energy Agency, Vienna, Austria (2010) (Available from http://www-nds.iaea.org/reports-new/indc-reports/indc-nds/indc-nds-0571.pdf).
Tetereva, 2011, Advanced evaluation of 237Np and 243Am neutron data, J. Korean Physical Society, 59, 867, 10.3938/jkps.59.867
D.W. Efurd, “3037-Flattop Irradiations of 241Am, 243Am, 237Np, and Ir,” Los Alamos National Laboratory memo INC11-86-541 (1986).
R. Capote Noy, “Summary Report of the Consultantsʼ Meeting on Review Benchmarking of Nuclear Data for the Th/U Fuel Cycle”, Vienna, Austria 20–22 December 2010, Report INDC(NDS)-0586, International Atomic Energy Agency, Vienna, Austria (2008). (Available from http://www-nds.iaea.org/publications/indc/indc-nds-0586.pdf).
Haouat, 1982, Neutron Scattering Cross Sections for 232Th, 233U, 235U, 238U, 239Pu, and 242Pu between 0.6 and 3.4 MeV, Nucl. Sci. Eng., 81, 491, 10.13182/NSE82-A21439
Goriely, 2011, Towards improved evaluation of neutron-induced fission cross section, J. Kor. Phys. Soc., 59, 979, 10.3938/jkps.59.979
Goriely, 2011, Towards improved evaluation of neutron-induced cross sections on actinides, Phys. Rev. C, 83, 034601, 10.1103/PhysRevC.83.034601
Behrens, 1977, Systematics of Neutron-Induced-Fission Cross Sections in the MeV Range, Phys. Rev. Lett., 39, 68, 10.1103/PhysRevLett.39.68
“Systematics of neutron-induced fission cross sections over the energy range 0.1 through 15 MeV, and at 0.0253 eV,” LLNL Internal Report UCIS-17509-2 (1977).
Younes, 2003, Simulated neutron-induced fission cross sections for various Pu, U, and Th isotopes, Phys. Rev. C, 68, 034610, 10.1103/PhysRevC.68.034610
W. Younes and H. C. Britt, “Estimates of the 237,239U(n,f) Cross Sections for 0.1 < En(MeV) <= 20,” LLNL Internal Report UCRL-TR-212600 (2005).
J.T.Burke et al., LLNL Internal Report LLNL-TR-460634-DRAFT (2009), to be submitted to Phys. Rev. C.
Manero, 1972, Status of the energy dependent nu-values for the heavy isotopes (Z>90) from thermal to 15 MeV and nu-values for spontaneous fission, At. En. Rev., 10, 637
B. Pritychenko, “Nuclear Data Resources for Capture gamma-Ray Spectroscopy and Related Topics,” Proc. 14th Int. Symp. Capt. Gamma-Ray Spectr. Rel. Topics, August 28 – September 2 2011, University of Guelph, Guelph, Ontario, Canada.
Soukhovitskii, 2004, Global coupled-channel optical potential for nucleon-actinide interaction from 1 keV to 200 MeV, Journal Phys. G: Nucl. Part. Phys., 30, 905, 10.1088/0954-3899/30/7/007
Young, 1998, Comprehensive Nuclear Model Calculations: Theory and Use of the GNASH Code, 227
C. L. Dunford, “A Unified Model for Analysis of Compound Nucleus Reactions,” AI-AEC-12931 (1970).
D. M. Hetrick and C. Y. FU, “GLUCS: A Generalized Least-Squares Program for Updating Cross-Section Evaluations with Correlated Data Sets,” Oak Ridge National Laboratory Report ORNL/TM-7341 (ENDF-303) (1980).
Iwamoto, 2009, JENDL Actinoid File 2008, J. Nucl. Sci. Technol., 46, 510, 10.3327/jnst.46.510
Young, 1967, Neutron Total and Absorption Cross Sections of Pu-238, Nucl. Sci. Eng., 30, 355, 10.13182/NSE67-A18398
Möller, 1995, Nuclear Ground-State Masses and Deformations, Atomic Data Nucl. Data Tables, 59, 185, 10.1006/adnd.1995.1002
M. Baba, H. Wakabayashi, N. Itoh, K. Maeda, and N. Hirakawa, “Measurements of Prompt Fission Neutron Spectra and Double-differential Neutron Inelasticscattering Cross Sections for 238U and 232Th,” IAEA Int. Nucl. Data report INDC(JPN)-129 (1989).
P. Talou, P. G. Young, T. Kawano, A. C. Kahler, and M. B. Chadwick, “Technical Report on n+240Pu Evaluation and Uncertainty Quantification,” Los Alamos National Laboratory Report LA-UR 09-08071 (2009).
Silbert, 1973, Fission cross section of plutonium-238, Nucl. Sci. Eng., 52, 176, 10.13182/NSE73-A28187
Budtz-Jørgensen, 1982, Fission Cross Section of 238Pu, 206
Ermagambetov, 1968, Cross-section of Pu-238 fission by fast neutrons, At. Energ., 25, 527, 10.1007/BF01162321
J.J. Ressler, J.T. Burke, J.E. Escher, C.T. Angell, M.S. Basunia, C.W. Bausang, L.A. Bernstein, D.L. Bleuel, B.L. Goldblum, J. Gostic, R. Hatarik, R.A. Henderson, J. Munson, E.B. Norman, L.W. Phair, T. Ross, N.D. Scielzo, M. Wiedeking, “Surrogate Measurement of the 238Pu (n,f) Cross Section”, LLNL Technical Report LLNL-TR-457798 (2010).
Granier, 2009, New Measurement of the 238Pu(n,f) Cross-Section, AIP CP, 1175, 227, 10.1063/1.3258228
Silbert, 1973, Neutron Capture Cross Section of Plutonium-238: Determination of Resonance Parameters, Nucl. Sci. Eng., 52, 187, 10.13182/NSE73-A28188
Madland, 1982, New Calculation of Prompt Fission Neutron Spectra and Average Prompt Neutron Multiplicities, Nucl. Sci. Eng., 81, 213, 10.13182/NSE82-5
Tudora, 2009, Systematic Behaviour of the Average Parameters Required for the Los Alamos Model of Prompt Neutron Emission, Annals of Nuclear Energy, 36, 72, 10.1016/j.anucene.2008.10.004
Jaffey, 1970, Measurement of prompt neutron fission yield (imagep) in thermal neutron fission of 232U, 238Pu, 24Pu, 241Am, 242mAm, 243Cm, 245Cm and in spontaneous fission of 244Cm, Nucl. Phys. A, 145, 1, 10.1016/0375-9474(70)90307-6
Kroshkin, 1970, Measurement of energy spectrum and average number of prompt fission neutrons, Atomic Energy, 29, 790, 10.1007/BF01159591
Poenitz, 1981, Total Neutron Cross Sections of Heavy Nuclei, Nucl. Sci. Eng., 78, 333, 10.13182/NSE81-A21367
W. P. Poenitz and J. F. Whalen, “Neutron Total Cross Section Measurements in the Energy Region from 47 keV to 20 MeV,” Argonne National Laboratory Report ANL/NDM/80 (1983).
Smith, 1972, Fast Neutron Total and Scattering Cross Sections of Plutonium-240, Nucl. Sci. Eng., 47, 19, 10.13182/NSE72-A28417
Tovesson, 2009, Neutron Induced Fission of 240Pu and 242Pu from 1eV to 200 MeV, Phys. Rev. C, 79, 014613, 10.1103/PhysRevC.79.014613
Laptev, 2004, Neutron Induced Fission Cross Sections of 240Pu and 243Am in the Energy Range 1–200 MeV, Nucl. Phys. A, 734, E45, 10.1016/j.nuclphysa.2004.03.016
Staples, 1998, Neutron-Induced Fission Cross-Section Ratios for 239Pu, 240Pu, 242Pu, and 244Pu Relative to 235U from 0.5 to 400 MeV, Nucl. Sci. Eng., 129, 149, 10.13182/NSE98-A1969
Weston, 1977, Neutron Capture Cross Section of Plutonium-240, Nucl. Sci. Eng., 63, 143, 10.13182/NSE77-A27017
Wisshak, 1978, Neutron Capture Cross-Section Ratios of Pu-240, Pu-242, U-238 and Au-197 in the Energy Range from 10 to 90 keV, Nucl. Sci. Eng., 66, 363, 10.13182/NSE78-A27219
Wisshak, 1979, A Measurement of the Subthreshold Neutron Fission Cross-Section of Pu-240 in the Energy Range from 10 to 250 keV, Nucl. Sci. Eng., 69, 39, 10.13182/NSE79-A21283
J. Fréhaut, G. Mosinski, R. Bois, and M. Soleilhac, “Measurement of the Average Number, NU-Bar, of the Prompt Neutrons Emitted in the Pu-240 and Pu-241 Fission Induced by Neutrons of Energy Between 1.5 and 15 MeV,” CEA Technical Report CEA-R-4626, 7411 (1974).
Vorobjova, 1974, Yields and Kinetic Energies of Fragments from Fission of the Pu-241 Nuclei Induced by Fast Neutrons, Yadernaya Fizika, 19, 1276
Kuzminov, 1961, Average Number of Prompt Neutrons in Pu240 Fission by 3.6- and 15-MeV Neutrons, Nejtronfiz, 246
Yu. A. Khokhlov, I. A. Ivanin, V. I. Inkov, Yu. I. Vinogradov, L. D. Danilin, and B. N. Polynov, “Measurements results of average neutron multiplicity from neutron induced fission of actinides in 0.5–10 MeV energy range,” Proc. of the Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, Tennessee, USA, May 9–13, I, 272 (1994).
G. Palmiotti and H. Hiruta, “Data testing at INEL using irradiation experiments,” Mini CSWEG Meeting June 22, 2011, Montauk, NY, unpublished.
Druzhinin, 1977, Fast neutron capture Cross sections, Atomnaya Energiya, 42, 314
Marie, 2006, Thermal neutron capture cross section measurements of 243Am and 242Pu using the new mini-INCA α- and γ-spectroscopy station, Nucl. Inst. Meth. A, 556, 10.1016/j.nima.2005.10.125
Butler, 1957, The neutron capture cross section of 238Pu 238Pu and 243Am in the thermal and epicadmium regions, Can. J. Phys., 35, 147, 10.1139/p57-018
Jandel, 2008, Neutron capture cross section of 241Am, Phys. Rev. C, 78, 034609, 10.1103/PhysRevC.78.034609
Tommasi, 2008, Analysis of the PROFIL and PROFIL-2 sample irradiation experiments in Phenix for JEFF-3.1 nuclear data validation, Nucl. Sci. Eng., 160, 232, 10.13182/NSE160-232
Talou, 2007, Improved evaluations of neutron-induced reactions on americium isotopes, Nuc. Sci. Eng., 155, 84, 10.13182/NSE07-A2646
Tonchev, 2008, Measurement of the 241Am(n,2n) reaction cross section from 7.6 MeV to 14.5 MeV, Phys. Rev. C, 77, 054610, 10.1103/PhysRevC.77.054610
Sage, 2010, High resolution measurements of the 241Am(n,2n) reaction cross section, Phys. Rev. C, 81, 064604, 10.1103/PhysRevC.81.064604
M.B. Chadwick, NEDPC (2008).
Weston, 1985, Neutron capture cross section of 243Am, Nucl. Sci. Eng., 91, 444, 10.13182/NSE85-A18360
Ohta, 2006, Measurement of the effective capture cross section of Americium-243 for thermal neutrons, J. Nucl. Sci. Tech., 43, 144, 10.3327/jnst.43.1441
Wisshak, 1983, Neutron capture and fission cross sections of americium-243 in the energy range from 5 to 250 keV, Nucl. Sci. Eng., 85, 251, 10.13182/NSE83-A17317
Iwamoto, 2008, JENDL Actinoid File 2008 and Plan of Covariance Evaluation, Nuclear Data Sheets, 109, 2885, 10.1016/j.nds.2008.11.028
Shibata, 2011, JENDL-4.0: A New Library for Innovative Nuclear Energy Systems, J. Korean Phys. Soc., 59, 1046, 10.3938/jkps.59.1046
Iwamoto, 2011, Covariance Evaluation for Actinide Nuclear Data in JENDL-4, J. Korean Phys. Soc., 59, 1224, 10.3938/jkps.59.1224
D. A. Brown, “Review of JENDL Actinoid File 2008,” Lawrence Livermore National Laboratory Internal Report LLNL-TM-419387 (2009).
B.C. Kiedrowski, “Theory, Interface, Verification, Validation, and Performance of the Adjoint-Weighted Point Reactor Kinetics Parameter Calculations in MCN”, Tech. Rep., Los Alamos National Laboratory, LA-UR-10-01700 (2010).
Y. Yedvab, I. Reiss, et. al., “Determination of Delayed Neutrons Source in the Frequency Domain Based on in-pile Oscillation Measurements”, Proc. PHYSOR 2006, Vancouver, Canada, Sept. 10–14 (2006).
R. Sher and C. Beck, “Fission Energy Release for 16 Fissioning Nuclides,” EPRI-NP-1771, Stanford University (1981).
Madland, 2006, Total Prompt Energy Release in the Neutron-Induced Fission of 235U, 238U and 239Pu, Nucl. Phys. A, 772, 113, 10.1016/j.nuclphysa.2006.03.013
R. Vogt, B. Beck, D. A. Brown, F. Daffin and J. Hedstrom, “Implementation of Energy-Dependent Q Values for Fission,” UCRL-TR-234617, Lawrence Livermore National Laboratory (2007).
R. Vogt, “Generalized Energy-Dependent Fission Q Values,” LLNL-TR-407620, Lawrence Livermore National Laboratory (2008).
Vogt, 2011, Generalized Energy-Dependent Q Values for Fission, J. Korean Phys. Soc., 59, 899, 10.3938/jkps.59.899
D. A. Brown, M.-A. Descalle, R. Hoffman, K. Kelley, P. Navratil, J. Pruet, N. Summers, I. Thompson, R. Vogt, “Release of the 2008 Evaluated Nuclear Data Library (ENDL2008),” LLNL-TR-413190, Lawrence Livermore National Laboratory (2009).
V. Pronyaev, A. Carlson, R. Capote Noy, and A. Wallner, “Summary Report from the Consultantsʼ Meeting on International Cross-Section Standards: Extending and Updating, 13–15 October 2010, Vienna,” Report INDC(NDS)-0583, International Atomic Energy Agency, Vienna, Austria (2011). (Available from http://www-nds.iaea.org/publications/indc/indc-nds-0583.pdf).
V. Pronyaev, A. Carlson, R. Capote Noy, and A. Wallner, “Summary Report from the Consultantsʼ Meeting on International Neutron Cross-Section Standards: Measurements and Evaluation Techniques, 13–15 October 2008, Vienna,” Report INDC(NDS)-0540, International Atomic Energy Agency, Vienna, Austria (2008). (Available from http://www-nds.iaea.org/publications/indc/indc-nds-0540.pdf).
Ratynski, 1988, Neutron capture cross section of 197Au: A standard for stellar nucleosynthesis, Phys. Rev. C, 37, 595, 10.1103/PhysRevC.37.595
Macklin, 1975, Gold neutron-capture cross section from 3 to 550 keV, Phys. Rev. C, 11, 1270, 10.1103/PhysRevC.11.1270
R.L. Macklin, “Gold neutron capture cross section from 100 TO 2000 keV,” private communication to S.F. Mughabghab, 1982; see also EXFOR 12720.
Lederer, 2011, 197Au(n,gamma) cross section in the unresolved resonance region, Phys. Rev. C, 83, 034608, 10.1103/PhysRevC.83.034608
Borella, 2006, Determination of the 232Th(n,γ) Cross Section from 4 to 140 keV at GELINA, Nucl. Sci. Eng., 152, 1, 10.13182/NSE06-A2557
C. Lampoudis, IRMM, Private Communication (2011).
Wallner, 2011, Neutron-capture studies of 235U and 238U via AMS, J. Korean Phys. Soc., 59, 1410, 10.3938/jkps.59.1410
A. Krasa, A. Plompen, G. Georginis, G. Feinberg, M. Friedman, A. Shor, Y. Eisen, D. Berkovits, M. Paul, “197Au(n,γ) cross-section in Maxwellian-like neutron spectrum,” paper presented at the Workshop on Activation Data, 1–3 June 2011, Prague, Czech Republic (http://www.ccfe.ac.uk/easy2011/Prague-2011/eaf2011-08-krasa.pdf).
G. Feinberg et al. “Quasi-stellar neutrons from the 7Li(p,n) reaction with an energy-broadened proton beam”, publication in preparation (2011).
Kornilov, 2010, The 235U(n,f) prompt fission neutron spectrum ay 100oK input neutron energy, Nucl. Sci. Eng., 165, 117, 10.13182/NSE09-25
Vorobyev, 2010, Eur. Phys. J. Web of Conferences, 8, 03004, 10.1051/epjconf/20100803004
T. R. England and B. F. Rider, “Evaluation and Compilation of Fission Product Yields,” ENDF-349, LA-UR-94-3106, Los Alamos National Laboratory (1994); Available from http://t2.lanl.gov/publications/yields/apxA.txt.
Selby, 2010, Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U, Nuclear Data Sheets, 111, 2891, 10.1016/j.nds.2010.11.002
MacInnes, 2011, Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu, Nuclear Data Sheets, 112, 3135, 10.1016/j.nds.2011.11.009
W. J. Maeck, “Fast Reactor Fission Yields for 239Pu and 241Pu,” Allied Chemical Corporation, Idaho Chemical Programs Rept., ICP-1050-II (1977).
W. J. Maeck, “The correlation of 239Pu thermal and fast reactor fission yields with neutron energy,” Allied Chemical Corporation — Idaho Chemical Programs Report, ENICO-1030 (1981).
I.J. Thompson, Y.M.X.M. Dardenne, J.M. Keneally, A. Roberton, L.E. Ahle, C.A. Hagmann, R.A. Henderson, D. Vogt, C.Y. Wu, and W. Younes, “Evaluations of Fission Chain Yields for 239Pu from Fission-Spectrum Neutrons”, Livermore report LLNL-JRNL-463744 (2011), submitted to Nucl. Sci. Eng. (2011).
H. C. Britt, J. M. Dairiki, R. W. Lougheed, D. P. McNabb, and S. Prussin, “Review of the Status of Cumulative Fission Yields from 239Pu(n,f) of Interest to Nuclear Forensics,” Lawrence Livermore Laboratory Report, LLNL-TR-458777 (2010).
Lestone, 2011, Energy dependence of Pu fission product yield, Nuclear Data Sheets, 112, 3120, 10.1016/j.nds.2011.11.008
Gindler, 1983, Mass distributions in monoenergetic-neutron-induced fission of 239Pu, Phys. Rev. C, 27, 2058, 10.1103/PhysRevC.27.2058
J. A. Schecker, M. R. Mac Innes, D. W. Barr, and W. C. T. Inkret, “A Re-evaluation of LANLʼs Historic Radiochemistry Constants,” LA-UR-05-3760, Los Alamos National Laboratory (2005).
G. P. Ford and A. E. Norris, “A Compilation of Yields from Neutron-Induced Fission of 232Th, 235U, 236U, 237Np, 238U and 239Pu Measured Radiochemically at Los Alamos,” LA-6129, Los Alamos National Laboratory (1976).
D. L. Nethaway to M. MacInnes, Private communication, “Fission Product Yields at 14 MeV”, Lawrence Livermore National Laboratory, October 12, (1971).
D. L. Nethaway and A. L. Prindle, “Evaluation of fission yields for 239Pu plus 14 MeV neutrons”, Lawrence Livermore National Laboratory Chemistry Department Technical Note No. 72-48, September 21 (1972). See also Note No. 72-51 for 235,238U, October 25 (1972).
J.A. Becker, D.J. Vieira, R.S. Rundberg, J.B. Wilhelmy, R. Macri, C. Hagmann, M.A. Stoyer, A. Tonchev, “Modernizing the fission basis”, Lawrence Livermore National Laboratory report LLNL-PROP-246546 (2010).
Becker, 2006, The 239Pu(n,2n) Story (U), Defense Research Review, 14.1, 19
Burrows, 1990, The evaluated nuclear structure data file: Philosophy, content, and uses, Nucl. Instr. and Meth. A, 286, 595, 10.1016/0168-9002(90)90922-S
Tuli, 1996, Evaluated nuclear structure data file, Nucl. Instr. and Meth. A, 369, 506, 10.1016/S0168-9002(96)80040-4
Firestone, 1996
D.E. Cullen et al., “Tables and graphs of photon interaction cross-sections from 10-eV to 100-GeV derived from the LLNL evaluated photon data library (EPDL). Part A: Z = 1 to 50,” Lawrence Livermore National Laboratory Report, UCRL-50400, Vol. 30, (1991).
Stepanek, 2000, Methods to determine the fluorescence and Auger spectra due to decay of radionuclides or due to a single atomic-subshell ionization and comparisons with experiments, Medical Physics, 27, 1544, 10.1118/1.599020
Kibedi, 2008, Evaluation of theoretical conversion coefficients using BrIcc, Nucl. Instr. and Meth. A, 589, 202, 10.1016/j.nima.2008.02.051
Audi, 2003, The AME2003 atomic mass Evaluation (II). Tables, graphs, and references, Nuclear Physics A, 729, 337, 10.1016/j.nuclphysa.2003.11.003
Kawano, 2008, Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation-Hauser-Feshbach model, Physical Review C, 78, 054601, 10.1103/PhysRevC.78.054601
Pfeiffer, 2002, Status of delayed-Neutron Precursor Data: Half-Lives and Neutron Emission Probabilities, Prog. Nucl. Energy, 41, 39, 10.1016/S0149-1970(02)00005-7
Algora, 2010, Reactor Decay Heat in 239Pu: Solving the γ Discrepancy in the 4-3000-s Cooling Period, Phys. Rev. Lett., 105, 202501, 10.1103/PhysRevLett.105.202501
A. Tobias, “Derivation of Decay Heat Benchmarks for U-235 and Pu-239 by a Least. Squares Fit to Measured Data,” Central Electricity Generating Board, CEGB Report No. RD/B/6210/R89 (1989).
T. Goorley, “Initial MCNP6 Release Overview,” submitted to Nuclear Technology (2011).
Klein Meulekamp, 2006, Calculating the effective delayed neutron fraction by Monte Carlo, Nucl. Sci. Eng., 152, 142, 10.13182/NSE03-107
S.C. van der Marck, R. Klein Meulekamp, A. Hogenbirk, and A.J. Koning, ”Benchmark results for delayed neutron data”, Proc. ND2004, Santa Fe, USA (2004) 531.
Reifarth, 2009, PINO – a tool for simulating neutron spectra resulting from the 7Li(p,n) reaction, Nuclear Instruments and Methods in Physics Research A, 608, 139, 10.1016/j.nima.2009.06.046
J.P. Lestone, “Preliminary Release of a Plutonium Prompt-Fission Neutron Energy Spectrum (PFNS) from the Analysis of NTS NUEX Data”, Los Alamos National Laboratory report LA-UR-03167 (2011).
Pritychenko, 2010, Calculations of Maxwellian-averaged cross sections and astrophysical reaction rates using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries, Atomic Data and Nuclear Data Tables, 96, 645, 10.1016/j.adt.2010.05.002
D.E. Cullen, “The ENDF/B Pre-processing codes (PREPRO-2010),” Available online from http://www-nds.iaea.org/ndspub/endf/prepro/.
B. Pritychenko, “Complete calculation of evaluated Maxwellian-averaged cross sections and their uncertainties for s-process nucleosynthesis”, Proc. Nuclei in Cosmos, PoS(NIC-XI)197, Heidelberg, Germany, July 19–23 (2010).
Bao, 2000, Neutron Cross Sections for Nucleosynthesis Studies, Atomic Data and Nuclear Data Tables, 76, 70, 10.1006/adnd.2000.0838
Koning, 2011, How to Randomly Evaluate Nuclear Data: A New Data Adjustment Method Applied to 239Pu, Nucl. Sci. Eng., 169, 68, 10.13182/NSE10-66
C.-Y. Wu, R. Henderson, J. Gostic, R.C. Haight, and H.Y. Lee, “Low-Mass Fission Detector for the Fission Neutron Spectrum Measurement,” Lawrence Livermore National Laboratory Internal Report LLNL-TR-461044 (2010).
Talou, 2011, Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on 239Pu, Phys. Rev. C, 83, 064612, 10.1103/PhysRevC.83.064612
Randrup, 2009, Calculation of fission observables through event-by-event simulation, Phys. Rev. C, 80, 024601, 10.1103/PhysRevC.80.024601
Lemaire, 2005, Monte Carlo approach to sequential neutron emission from fission fragments, Phys. Rev. C, 72, 024601, 10.1103/PhysRevC.72.024601
D. Williams, R. Bahran, E. Blaine, B. McDermott, M. Rapp, Y. Danon, D. Barry, G. Leinweber, R. Block, J. Hoole, “A new method for the measurement of the neutron capture and fission cross sections of 235U”, Submitted Proceedings of the Tenth International Topical Meeting on Nuclear Applications of Accelerators (AccApp 2011), Knoxville, TN, 2011.
A. Chyzh, “Neutron Capture Measurements on 157Gd and 89Y at DANCE,” PhD dissertation, North Carolina State University (2009).
Yeong-Rok Kang, Tae-TK Ro, Taofeng Wang, Sungshul Yang, Manwoo Lee, Guinyun Kim, Jong-Hwan Lee, Robert Block, Devin Barry and Yaron Danon, “Neutron Capture Measurements and Parameters of Gadolinium”, International Conference on Nuclear Data for Science and Technology (ND2010), Korea, 26–30 April, 2010.
Baramsai Bayarbadrakh, “Neutron capture reactions on gadolinium isotopes,” PhD dissertation, North Carolina State University (2010).
R. Bahran, Y. Danon, M. Rapp, D. Williams, D. Barry, G. Leinweber, R. Block, J. Hoole, “A New High Resolution Neutron Transmission Detector at the RPI Gaerttner LINAC Laboratory”, Submitted Proceedings of the Tenth International Topical Meeting on Nuclear Applications of Accelerators (AccApp 2011), Knoxville, TN, (2011).
M. Herman, “Summary Document (Minutes) Presentations & Reports, CSEWG 2010”. Available online http://www.nndc.bnl.gov/meetings/csewg2010.