Subcell limiting strategies for discontinuous Galerkin spectral element methods

Computers & Fluids - Tập 247 - Trang 105627 - 2022
Andrés M. Rueda-Ramírez1, Will Pazner2, Gregor J. Gassner1,3
1Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, United States of America
3Center for Data and Simulation Science, University of Cologne, 50931 Cologne, Germany

Tài liệu tham khảo

Sonntag, 2017, Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J Sci Comput, 70, 1262, 10.1007/s10915-016-0287-5 Krais, 2021, FLEXI: A high order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws, Comput Math Appl, 81, 186, 10.1016/j.camwa.2020.05.004 Sonntag, 2017, 177 Sonntag, 2014, Shock capturing for discontinuous Galerkin methods using finite volume subcells, 945 Gaburro, 2021, A posteriori subcell finite volume limiter for general PNPM schemes: Applications from gasdynamics to relativistic magnetohydrodynamics, J Sci Comput, 86, 10.1007/s10915-020-01405-8 Dumbser, 2016, A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J Comput Phys, 319, 163, 10.1016/j.jcp.2016.05.002 Boscheri, 2019, Central WENO subcell finite volume limiters for ADER discontinuous Galerkin schemes on fixed and moving unstructured meshes, Commun Comput Phys, 25, 10.4208/cicp.OA-2018-0069 Dumbser, 2014, A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J Comput Phys, 278, 47, 10.1016/j.jcp.2014.08.009 Boris, 1976, Flux-corrected transport. III. Minimal-error FCT algorithms, J Comput Phys, 20, 397, 10.1016/0021-9991(76)90091-7 2012 Löhner, 1987, Finite element flux-corrected transport (FEM–FCT) for the Euler and Navier–Stokes equations, Internat J Numer Methods Fluids, 7, 1093, 10.1002/fld.1650071007 Kuzmin, 2010, Failsafe flux limiting and constrained data projections for equations of gas dynamics, J Comput Phys, 229, 8766, 10.1016/j.jcp.2010.08.009 Giannakouros, 1994, A spectral element-FCT method for the compressible Euler equations, J Comput Phys, 115, 65, 10.1006/jcph.1994.1179 Sidilkover, 1993, Non-oscillatory spectral element Chebyshev method for shock wave calculations, J Comput Phys, 107, 10, 10.1006/jcph.1993.1121 Fisher, 2013, Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions, J Comput Phys, 234, 353, 10.1016/j.jcp.2012.09.026 Carpenter, 2014, Entropy stable spectral collocation schemes for the Navier-Stokes equations: Discontinuous interfaces, SIAM J Sci Comput, 36, B835, 10.1137/130932193 Gassner, 2013, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J Sci Comput, 35, A1233, 10.1137/120890144 Gassner, 2021, A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: Why? When? What? Where?, Front Phys, 8, 10.3389/fphy.2020.500690 Chan, 2018, On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J Comput Phys, 362, 346, 10.1016/j.jcp.2018.02.033 Renac, 2019, Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J Comput Phys, 382, 1, 10.1016/j.jcp.2018.12.035 Ranocha, 2019 Bohm, 2018, An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification, J Comput Phys Vilar, 2019, A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J Comput Phys, 387, 245, 10.1016/j.jcp.2018.10.050 Hennemann, 2020, A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations, J Comput Phys Rueda-Ramírez, 2021, An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part II: Subcell finite volume shock capturing, J Comput Phys, 444, 10.1016/j.jcp.2021.110580 Rueda-Ramírez AM, Gassner GJ. A Subcell Finite Volume Positivity-Preserving Limiter for DGSEM Discretizations of the Euler Equations. In: WCCM-ECCOMAS2020. 2021, p. 1–12. Berthon, 2008, An invariant domain preserving MUSCL scheme, 933 Guermond, 2016, Invariant domains and first-order continuous finite element approximation for hyperbolic systems, SIAM J Numer Anal, 54, 2466, 10.1137/16M1074291 Guermond, 2017, Invariant domains and second-order continuous finite element approximation for scalar conservation equations, SIAM J Numer Analy, 55, 3120, 10.1137/16M1106560 Guermond, 2019, Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems, Comput Methods Appl Mech Engrg, 347, 143, 10.1016/j.cma.2018.11.036 Pazner, 2021, Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting, Comput Methods Appl Mech Engrg, 382, 10.1016/j.cma.2021.113876 Gottlieb, 2005, On high order strong stability preserving runge-kutta and multi step time discretizations, J Sci Comput, 25, 105, 10.1007/s10915-004-4635-5 Gottlieb, 2011 Shu, 1988, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J Comput Phys, 77, 439, 10.1016/0021-9991(88)90177-5 Kopriva, 2009 Gassner, 2018, The BR1 scheme is stable for the compressible Navier-Stokes equations, J Sci Comput, 77, 154, 10.1007/s10915-018-0702-1 Gassner, 2016, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J Comput Phys, 327, 39, 10.1016/j.jcp.2016.09.013 Ismail, 2009, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J Comput Phys, 228, 5410, 10.1016/j.jcp.2009.04.021 Chandrashekar, 2013, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations, Commun Comput Phys, 14, 1252, 10.4208/cicp.170712.010313a Shima, 2021, Preventing spurious pressure oscillations in split convective form discretization for compressible flows, J Comput Phys, 427, 10.1016/j.jcp.2020.110060 Ranocha, 2018 Ranocha, 2021, Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes, Commun Appl Math Comput, 1 Fisher, 2013, High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains, J Comput Phys, 252, 518, 10.1016/j.jcp.2013.06.014 Lax, 1960, Systems of conservation laws, Comm Pure Appl Math, 13, 217, 10.1002/cpa.3160130205 Toro, 1999 Fjordholm, 2012, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J Numer Anal, 50, 544, 10.1137/110836961 Berthon, 2005, Stability of the MUSCL schemes for the Euler equations, Commun Math Sci, 3, 133, 10.4310/CMS.2005.v3.n2.a3 Persson P-O, Peraire J. Sub-Cell Shock Capturing for Discontinuous Galerkin Methods. In: 44th AIAA aerospace sciences meeting and exhibit. ISBN: 978-1-62410-039-0, 2006, p. 1–13. Klöckner, 2011, Viscous shock capturing in a time-explicit discontinuous Galerkin method, Math Model Nat Phenom, 6, 57, 10.1051/mmnp/20116303 Fernandez, 2018 Ciucă, 2020, Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics, J Comput Phys X, 5 Zalesak, 1979, Fully multidimensional flux-corrected transport algorithms for fluids, J Comput Phys, 31, 335, 10.1016/0021-9991(79)90051-2 Guermond, 2016, Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations, J Comput Phys, 321, 908, 10.1016/j.jcp.2016.05.054 Maier, 2021, Efficient parallel 3D computation of the compressible Euler equations with an invariant-domain preserving second-order finite-element scheme, ACM Trans Parallel Comput, 8, 1, 10.1145/3470637 Kuzmin, 2022, Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems, Comput Methods Appl Mech Engrg, 389, 10.1016/j.cma.2021.114428 Einfeldt, 1988, On Godunov-type methods for gas dynamics, SIAM J Numer Anal, 25, 294, 10.1137/0725021 Einfeldt, 1991, On Godunov-type methods near low densities, J Comput Phys, 92, 273, 10.1016/0021-9991(91)90211-3 Kurganov, 2007, Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J Sci Comput, 29, 2381, 10.1137/040614189 Ranocha H, Schlottke-Lakemper M, Winters AR, Faulhaber E, Chan J, Gassner G. Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing. In: Proceedings of the juliacon conferences. Vol. 1. (1):2022, p. 77. Schlottke-Lakemper, 2021, A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics, J Comput Phys, 442, 10.1016/j.jcp.2021.110467 Kuzmin, 2021, Entropy stabilization and property-preserving limiters for P1 discontinuous Galerkin discretizations of scalar hyperbolic problems, J Numer Math, 29, 307, 10.1515/jnma-2020-0056 Jiang, 1994, On a cell entropy inequality for discontinuous Galerkin methods, Math Comp, 62, 531, 10.1090/S0025-5718-1994-1223232-7 Zhang, 2010, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J Comput Phys, 229, 8918, 10.1016/j.jcp.2010.08.016 Galbraith, 2017, 5Th international workshop on high-order CFD methods Geuzaine, 2009, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat J Numer Methods Engrg, 79, 1309, 10.1002/nme.2579 Ha, 2005, Numerical simulation of high mach number astrophysical jets with radiative cooling, J Sci Comput, 24, 29, 10.1007/s10915-004-4786-4 Liu, 2021 Derigs, 2018, Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J Comput Phys, 364, 420, 10.1016/j.jcp.2018.03.002 Dedner, 2002, Hyperbolic divergence cleaning for the MHD equations, J Comput Phys, 175, 645, 10.1006/jcph.2001.6961 Munz, 2000, Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J Comput Phys, 161, 484, 10.1006/jcph.2000.6507 Orszag, 1979, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J Fluid Mech, 90, 129, 10.1017/S002211207900210X Chandrashekar, 2016, Entropy stable finite volume scheme for ideal compressible MHD on 2-D cartesian meshes, SIAM J Numer Anal, 54, 1313, 10.1137/15M1013626 Stone, 2008, Athena: A new code for astrophysical MHD, Astrophys J Suppl Ser, 178, 137, 10.1086/588755 Kuzmin, 2020, Limiting and divergence cleaning for continuous finite element discretizations of the MHD equations, J Comput Phys, 407, 10.1016/j.jcp.2020.109230