Plasma assisted combustion: Dynamics and chemistry

Progress in Energy and Combustion Science - Tập 48 - Trang 21-83 - 2015
Yiguang Ju1, Wenting Sun2
1Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
2School of Aerospace Engineering, Georgia Institute of Technology, GA 30332, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475

Christensen, 1999, Demonstrating the multi-fuel capability of a homogeneous charge compression ignition engine with variable compression ratio, SAE Trans, 108, 2099

Dec, 2010, Advanced compression–ignition engines – understanding the in-cylinder processes, Proc Combust Inst, 32, 2727, 10.1016/j.proci.2008.08.008

Lu, 2011, Fuel design and management for the control of advanced compression-ignition combustion modes, Prog Energy Combust Sci, 37, 741, 10.1016/j.pecs.2011.03.003

Manente, 2011, Gasoline partially premixed combustion, the future of internal combustion engines?, Int J Engine Res, 12, 194, 10.1177/1468087411402441

Reitz, 2013, Directions in internal combustion engine research, Combust Flame, 160, 1, 10.1016/j.combustflame.2012.11.002

Curran, 2002, A comprehensive modeling study of iso-octane oxidation, Combust Flame, 129, 253, 10.1016/S0010-2180(01)00373-X

Mongia HC, Lafayette W, On continuous NOx reduction of aero-propulsion engines. In: 48th AIAA aerospace sciences meeting including the new Horizons forum and aerospace exposition, Orlando, Florida: AIAA-2010-1329.

McManus, 2013, Low-emissions gas turbine combustion: design trends and challenges

Mao, 2004, Experimental investigation of a multiplex fuel injector module

Hsu, 1998, Characteristics of a trapped-vortex combustor introduction, J Propuls Power, 14, 57, 10.2514/2.5266

Schwer, 2011, Numerical investigation of the physics of rotating-detonation-engines, Proc Combust Inst, 33, 2195, 10.1016/j.proci.2010.07.050

Moorthy, 2012, Scramjet combustor development: a review, J Aerosp Eng Technol, 2, 28

Yu, 2013, Supersonic combustion and hypersonic propulsion, Adv Mech, 43, 449

Jiang, 2014, Experiments and development of long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)

http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/hydrogen-turbines.

Santner, 2013, The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure, Proc Combust Inst, 34, 719, 10.1016/j.proci.2012.06.065

Katsuki, 1998, The science and technology of combustion in highly preheated air, Symp Int Combust, 27, 3135, 10.1016/S0082-0784(98)80176-8

Cavaliere, 2004, Mild combustion, Prog Energy Combust Sci, 30, 329, 10.1016/j.pecs.2004.02.003

Buhre, 2005, Oxy-fuel combustion technology for coal-fired power generation, Proc Combust Inst, 31, 283, 10.1016/j.pecs.2005.07.001

Larfeldt, 2014

Hu, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J, 54, 621, 10.1111/j.1365-313X.2008.03492.x

Kohse-Höinghaus, 2010, Biofuel combustion chemistry: from ethanol to biodiesel, Angew Chem Int Ed, 49, 3572, 10.1002/anie.200905335

Dooley, 2010, A jet fuel surrogate formulated by real fuel properties, Combust Flame, 157, 2333, 10.1016/j.combustflame.2010.07.001

Bessee, 2011

Blakey, 2011, Aviation gas turbine alternative fuels: a review, Proc Combust Inst, 33, 2863, 10.1016/j.proci.2010.09.011

Dale, 2006, 41

Ju, 2014, Recent progress and challenges in fundamental combustion research, Adv Mech, 44, 201402

Westbrook, 2013, Biofuels combustion, Annu. Rev Phys Chem, 64, 201, 10.1146/annurev-physchem-040412-110009

Won, 2014, The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis, Combust Flame, 161, 826, 10.1016/j.combustflame.2013.08.010

Diévart, 2012, A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction, Proc Combust Inst, 34, 821, 10.1016/j.proci.2012.06.180

Harper, 2011, Comprehensive reaction mechanism for n-butanol pyrolysis and combustion, Combust Flame, 158, 16, 10.1016/j.combustflame.2010.06.002

Rasi, 2007, Trace compounds of biogas from different biogas production plants, Energy, 32, 1375, 10.1016/j.energy.2006.10.018

Besenbacher, 1998, Design of a surface alloy catalyst for steam reforming, Science, 279, 1913, 10.1126/science.279.5358.1913

DoE, 2006

Starikovskiy, 2013, Plasma assisted ignition and combustion, Prog Energy Combust Sci, 39, 61, 10.1016/j.pecs.2012.05.003

Starikovskaia, 2006, Plasma assisted ignition and combustion, J Phys D Appl Phys, 39, R265, 10.1088/0022-3727/39/16/R01

Ombrello, 2006, Combustion enhancement via stabilized piecewise, AIAA J, 44, 142, 10.2514/1.17018

Lou, 2007, Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma, Proc Combust Inst, 31, 3327, 10.1016/j.proci.2006.07.126

Kim, 2010, The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames, Combust Flame, 157, 374, 10.1016/j.combustflame.2009.06.016

Takita, 2000, Ignition characteristics of plasma torch for hydrogen jet in an airstream, J Propuls Power, 162, 227, 10.2514/2.5587

Leonov, 2006, Plasma-assisted combustion of gaseous fuel in supersonic duct, IEEE Trans Plasma Sci, 34, 2514, 10.1109/TPS.2006.886089

Sun, 2011, Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction, Proc Combust Inst, 33, 3211, 10.1016/j.proci.2010.06.148

Kimura, 1981, The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows, Combust Flame, 42, 297, 10.1016/0010-2180(81)90164-4

Barbi, 1989, Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications, J Propuls Power, 5, 129, 10.2514/3.23126

Takita, 2002, Ignition and flame-holding by oxygen, nitrogen and argon plasma torches in supersonic airflow, Combust Flame, 128, 301, 10.1016/S0010-2180(01)00354-6

Takita, 2007, Ignition enhancement by addition of NO and NO2 from a N2/O2 plasma torch in a supersonic flow, Proc Combust Inst, 31, 2489, 10.1016/j.proci.2006.07.108

Kobayashi, 2004, Supersonic flow ignition by plasma torch and H2/O2 torch. Journal of propulsion and power, J Propuls Power, 20, 294, 10.2514/1.1760

Wagner, 1989, Plasma torch igniter for scramjets, J Propuls Power, 5, 548, 10.2514/3.23188

Jacobsen, 2008, Plasma-assisted ignition in scramjets, J Propuls Power, 24, 641, 10.2514/1.27358

Leonov, 2007, Plasma-induced ignition and plasma-assisted combustion in high-speed flow, Plasma Sources Sci Technol, 16, 132, 10.1088/0963-0252/16/1/018

Esakov, 2004, Experiments on propane ignition in high-speed airflow using a deeply under critical microwave discharge

Williams, 2004

Klimov, 2004, External and internal plasma-assisted combustion

Shibkov, 2004, propane–butane–air mixture ignition and combustion in the aerodynamic channel with the stagnant zone

Do, 2010, Plasma assisted flame ignition of supersonic flows over a flat wall, Combust Flame, 157, 2298, 10.1016/j.combustflame.2010.07.006

Kailasanath, 2003, Recent developments in the research on pulse detonation engines, AIAA J, 41, 145, 10.2514/2.1933

Dean, 2007, A review of PDE development for propulsion applications

Starikovskiy, 2012, Plasma-assisted ignition and deflagration-to-detonation transition, PhilosTrans R Soc A Math Phys Eng Sci, 370, 740, 10.1098/rsta.2011.0344

Rakitin, 2008, Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges, Combust Flame, 155, 343, 10.1016/j.combustflame.2008.05.019

Busby, 2007, Effects of corona, spark and surface discharges on ignition delay and deflagration-to-detonation times in pulsed detonation engines

Lefkowitz, 2013, The effects of repetitively pulsed nanosecond discharges on ignition time in a pulsed detonation engine

Warris, 1985, Ignition and flame stabilization by plasma jets in fast gas streams, Symp Int Combust, 20, 1825, 10.1016/S0082-0784(85)80680-9

Matveev, 2005, Non-equilibrium plasma igniters and pilots for aerospace application

Ganguly, 2007, Hydrocarbon combustion enhancement by applied electric field and plasma kinetics, Plasma Phys Control Fusion, 49, B239, 10.1088/0741-3335/49/12B/S22

Choi, 2004, Stabilization of a combustion process near lean blow off by an electric discharge

Pilla, 2006, Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma, IEEE Trans Plasma Sci, 34, 2471, 10.1109/TPS.2006.886081

Ikeda, 2010, Development of microwave-enhanced spark-induced breakdown spectroscopy, Appl Opt, 49, 2471, 10.1364/AO.49.000C95

Lefkowitz, 2012, A study of plasma-assisted ignition in a small internal combustion engine

Wolk, 2013, Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combust Flame, 160, 1225, 10.1016/j.combustflame.2013.02.004

Wang, 2013, Visual features of microwave ignition of methane–air mixture in a constant volume cylinder, Appl Phys Lett, 103, 204104, 10.1063/1.4830272

Maly, 1984, Spark ignition: its physics and effect on the internal combustion engine, 91

Mariani, 2014, Radio frequency spark plug: an ignition system for modern internal combustion engines, Appl Energy, 122, 151, 10.1016/j.apenergy.2014.02.009

Dale, 1978, 780329

Ma, 1998, Laser spark ignition and combustion characteristics of methane-air mixtures, Combust Flame, 112, 492, 10.1016/S0010-2180(97)00138-7

Herdin, 2005, Laser ignition: a new concept to use and increase the potentials of gas engines, 673

Morsy, 2012, Review and recent developments of laser ignition for internal combustion engines applications, Renew Sustain Energy Rev, 16, 4849, 10.1016/j.rser.2012.04.038

Kofler, 2007, An innovative solid-state laser for engine ignition, Laser Phys Lett, 4, 322, 10.1002/lapl.200610106

Cathey, 2007, Nanosecond plasma ignition for improved performance of an internal combustion engine, IEEE Trans Plasma Sci, 35, 1664, 10.1109/TPS.2007.907901

Liu, 2005, Transient plasma ignition of quiescent and flowing air/fuel mixtures, IEEE Trans Plasma Sci, 33, 844, 10.1109/TPS.2005.845251

Shiraishi, 2009, A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition, J Phys D Appl Phys, 42, 135208, 10.1088/0022-3727/42/13/135208

Czemichowski, 1994, Gliding arc. applications to engineering and environment control, Pure Appl Chem, 66, 1301, 10.1351/pac199466061301

Behbahani, 1983, The destruction of nitric oxide by nitrogen atoms from plasma jets: designing for thermal stratification, Combust Sci Technol, 30, 289, 10.1080/00102208308923625

Penetrante, 1998, 982508

Kim, 2001, Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts, J Phys D Appl Phys, 34, 604, 10.1088/0022-3727/34/4/322

Puchkarev, 1997, Energy efficient plasma processing of gaseous emission using a short pulse discharge, Appl Phys Lett, 71, 3364, 10.1063/1.120338

Urashima, 1997, Reduction of NOx from combustion flue gases by superimposed barrier discharge plasma reactors, IEEE Trans Ind Appl, 33, 879, 10.1109/28.605727

Khacef, 2002, NOx remediation in oxygen-rich exhaust gas using atmospheric pressure non-thermal plasma generated by a pulsed nanosecond dielectric barrier discharge, J Phys D Appl Phys, 35, 1491, 10.1088/0022-3727/35/13/307

Fridman, 2008

Brethes-Dupouey, 2000, Removal of H2S in air by using gliding discharges, Eur Phys J Appl Phys, 11, 43, 10.1051/epjap:2000144

Du, 2007, Decomposition of toluene in a gliding arc discharge plasma reactor, Plasma Sources Sci Technol, 16, 791, 10.1088/0963-0252/16/4/014

Yu, 2010, Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor, J Hazard Mater, 180, 449, 10.1016/j.jhazmat.2010.04.051

Higashi, 1992, Soot elimination and NOx and SOx reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics, IEEE Trans Plasma Sci, 20, 1, 10.1109/27.120185

Okubo, 2004, Low-temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge, IEEE Trans Plasma Sci, 40, 1504

Martin, 2005, The oxidation of carbon soot in a non-thermal, atmospheric pressure plasma: experiment and modelling, J Adv Oxid Technol, 8, 126

Cha, 2005, Soot suppression by nonthermal plasma in coflow jet diffusion flames using a dielectric barrier discharge, Combust Flame, 141, 438, 10.1016/j.combustflame.2005.02.002

Bromberg, 2000, System optimization and cost analysis of plasma catalytic reforming of natural gas, Int J Hydrogen Energy, 25, 1157, 10.1016/S0360-3199(00)00048-3

Bromberg, 1999, Plasma catalytic reforming of methane, Int J Hydrogen Energy, 24, 1131, 10.1016/S0360-3199(98)00178-5

Fridman, 1998, Gliding arc gas discharge, Prog Energy Combust Sci, 25, 211, 10.1016/S0360-1285(98)00021-5

Kaske, 1986, 1

Paulmier, 2005, Use of non-thermal plasma for hydrocarbon reforming, Chem Eng J, 106, 59, 10.1016/j.cej.2004.09.005

Petitpas, 2007, A comparative study of non-thermal plasma assisted reforming technologies, Int J Hydrogen Energy, 32, 2848, 10.1016/j.ijhydene.2007.03.026

Zhou, 1998, Nonequilibrium plasma reforming of greenhouse gases to synthesis gas, Energy Fuels, 12, 1191, 10.1021/ef980044h

Hammer, 2004, Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes, Catal Today, 89, 5, 10.1016/j.cattod.2003.11.001

Tao, 2011, CH4/CO2 reforming by plasma–challenges and opportunities, Prog Energy Combust Sci, 37, 113, 10.1016/j.pecs.2010.05.001

Sun, 2012, Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits, Combust Flame, 159, 221, 10.1016/j.combustflame.2011.07.008

Sun, 2014, In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture, Combust Flam, 1

Won, 2015, Self-sustaining n-heptane cool diffusion flames activated by ozone, Proc Combust Inst, 10.1016/j.proci.2014.05.021

Hicks, 2005, Singlet oxygen generation in a high pressure non-self-sustained electric discharge, J Phys D Appl Phys, 38, 3812, 10.1088/0022-3727/38/20/007

Raizer, 1991

Sun, 2013, Optical diagnostics of a gliding arc, Opt Express, 21, 6028, 10.1364/OE.21.006028

Starikovskaia, 2004, Analysis of the spatial uniformity of the combustion of a gaseous mixture initiated by a nanosecond discharge, Combust Flame, 139, 177, 10.1016/j.combustflame.2004.07.005

Raizer, 1995

Lukes, 2005, Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor, J Phys D Appl Phys, 38, 409, 10.1088/0022-3727/38/3/010

Chen, 2002

Chen, 2007, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust Theory Model, 11, 427, 10.1080/13647830600999850

Brande, 1814, The Bakerian lecture: on some new electro-chemical phenomena, Philos Trans R Soc Lond, 104, 51, 10.1098/rstl.1814.0005

Haselfoot, 1904, XLV. The electrical effects produced by the explosion of hydrogen and oxygen, London, Edinburgh Dublin Philos J Sci, 8, 471, 10.1080/14786440409463215

Kirkby, 1911, A theory of the chemical action of the electric discharge in electrolytic gas, Proc R Soc Lond Ser A, 151, 10.1098/rspa.1911.0030

Lawton, 1962, Flame-arc combination, Nature, 193, 736, 10.1038/193736a0

Chen, 1965, Augmenting flames with electric discharges, Symp Int Combust, 743, 10.1016/S0082-0784(65)80218-1

Lewis, 1931, The effect of an electric field on flames and their propagation, J Am Chem Soc, 53, 1304, 10.1021/ja01355a018

Calcote, 1949, Electrical properties of flames: burner flames in transverse electric fields, Symp Combust Flame Explos Phenom, 3, 245, 10.1016/S1062-2896(49)80033-X

Wortberg, 1965, Ion-concentration measurements in a flat flame at atmospheric pressure, Symp Int Combust, 10, 651, 10.1016/S0082-0784(65)80210-7

Jaggers, 1971, The effect of electric fields ou the burning velocity of various flames, Combust Flame, 16, 275, 10.1016/S0010-2180(71)80098-6

Heinsohn, 1967, The effects of an electric field on an opposed-jet diffusion flame, Combust Flame, 11, 288, 10.1016/0010-2180(67)90018-1

Won, 2008, Effect of electric fields on the propagation speed of tribrachial flames in coflow jets, Combust Flame, 152, 496, 10.1016/j.combustflame.2007.11.008

Bradley, 1975, Electron temperatures in flame gases: experiment and theory, Combust Flame, 24, 169, 10.1016/0010-2180(75)90144-3

Tewari, 1975, An experimental study of the effects of high frequency electric fields on laser-induced flame propagation, Combust Flame, 24, 159, 10.1016/0010-2180(75)90143-1

Clements, 1981, Enhancement of flame speed by intense microwave radiation, Combust Sci Technol, 26, 77, 10.1080/00102208108946948

Groff, 1984, Microwave effects on premixed flames, Combust Flame, 56, 293, 10.1016/0010-2180(84)90063-4

MacLatchy, 1982, An experimental investigation of the effect of microwave radiation on a propane-air flame, Combust Flame, 45, 161, 10.1016/0010-2180(82)90042-6

Ogawa, 1998, Influence of microwave on methane–air laminar flames, Jpn J Appl Phys, 37, 179, 10.1143/JJAP.37.179

Stockman, 2009, Measurements of combustion properties in a microwave enhanced flame, Combust Flame, 156, 1453, 10.1016/j.combustflame.2009.02.006

Ju, 2004, Numerical study of the effect of microwave discharge on the premixed methane-air flame

Zaidi, 2006, Measurements of hydrocarbon flame speed enhancement in high-Q microwave cavity

Michael, 2011, Ultra-lean combustion sustained by pulsed subcritical microwaves

Ombrello, 2008, Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma, AIAA J, 46, 2424, 10.2514/1.33005

Ombrello, 2008, Kinetic ignition enhancement of H2 versus fuel-blended air diffusion flames using nonequilibrium plasma, IEEE Trans Plasma Sci, 36, 2924, 10.1109/TPS.2008.2005987

Fridman, 2008, Characteristics of gliding arc and its application in combustion enhancement, J Propuls Power, 24, 1216, 10.2514/1.24795

Williams, 1985

Glassman, 1987

Law, 2010

Sun, 2013, Direct ignition and S-curve transition by in situ nanosecond pulsed discharge in methane/oxygen/helium counterflow flame, Proc Combust Inst, 34, 847, 10.1016/j.proci.2012.06.104

Sun, 2013

Samukawa, 2012, The 2012 plasma roadmap, J Phys D Appl Phys, 253001, 10.1088/0022-3727/45/25/253001

Yin, 2013, OH radical and temperature measurements during ignition of H2–air mixtures excited by a repetitively pulsed nanosecond discharge, Proc Combust Inst, 34, 3249, 10.1016/j.proci.2012.07.015

Zuzeek, 2011, Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen–air plasmas, Proc Combust Inst, 33, 3225, 10.1016/j.proci.2010.05.100

Mintusov, 2009, Mechanism of plasma assisted oxidation and ignition of ethylene–air flows by a repetitively pulsed nanosecond discharge, Proc Combust Inst, 32, 3181, 10.1016/j.proci.2008.05.064

Starikovskiy, 2012, Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures

Stepanyan, 2013, Time-resolved electric field measurements in nanosecond surface dielectric discharge, comparison of different polarities, ignition of combustible mixtures by surface discharge in a rapid compression machine

Cathey, 2008, OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane–air mixtures, Combust Flame, 154, 715, 10.1016/j.combustflame.2008.03.025

Starik, 2008, Initiation of combustion of a hydrogen-air mixture with ozone impurity by UV laser radiation, Tech Phys, 53, 235, 10.1134/S106378420802014X

Kozlov, 2008, Enhancement of combustion of a hydrogen-air mixture by excitation of O2 molecules to the a1Δg state, Combust Explos Shock Waves, 44, 371, 10.1007/s10573-008-0062-5

Smirnov, 2008, On the influence of electronically excited oxygen molecules on combustion of hydrogen–oxygen mixture, J Phys D Appl Phys, 41, 192001, 10.1088/0022-3727/41/19/192001

Ombrello, 2010, Flame propagation enhancement by plasma excitation of oxygen. Part II: effects of O2(a1Δg), Combust Flame, 157, 1916, 10.1016/j.combustflame.2010.02.004

Ombrello, 2010, Flame propagation enhancement by plasma excitation of oxygen. Part I: effects of O3, Combust Flame, 157, 1906, 10.1016/j.combustflame.2010.02.005

Wang, 2012, Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations, Combust Flame, 159, 120, 10.1016/j.combustflame.2011.06.017

Liang, 2012, Study of ozone-enhanced combustion in H2/CO/N2/air premixed flames by laminar burning velocity measurements and kinetic modeling, Int J Hydrogen Energy, 1

Uddi, 2009, Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence, Proc Combust Inst, 32, 929, 10.1016/j.proci.2008.06.049

Stancu, 2010, Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF, J Phys D Appl Phys, 43, 124002, 10.1088/0022-3727/43/12/124002

Mintoussov, 2004, Propane–air flame control by non-equilibrium low temperature pulsed nanosecond barrier discharge

Moeck, 2013, Control of combustion dynamics in a swirl-stabilized combustor with nanosecond repetitively pulsed discharges

Schmidt, 2014, Femtosecond TALIF imaging of atomic hydrogen in pulsed, non-equilibrium plasmas

Montello, 2013, Picosecond CARS measurements of nitrogen vibrational loading and rotational/translational temperature in non-equilibrium discharges, J Phys D Appl Phys, 46, 464002, 10.1088/0022-3727/46/46/464002

Brumfield, 2013, Direct in situ quantification of HO2 from a flow reactor, J Phys Chem Lett, 4, 872, 10.1021/jz400143c

Brumfield, 2014, Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor, Opt Lett, 39, 1783, 10.1364/OL.39.001783

Lefkowitz, 2015, In situ species diagnostics and kinetic study of plasma activated ethylene pyrolysis and oxidation in a low temperature flow reactor, Proc Combust Inst, 10.1016/j.proci.2014.08.001

Pai, 2010, Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime, Plasma Sources Sci Technol, 19, 065015, 10.1088/0963-0252/19/6/065015

Bak, 2012, Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit, Combust Flame, 159, 3128, 10.1016/j.combustflame.2012.03.023

Starikovskaia, 2014, Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms, J Phys D Appl Phys, 47, 353001, 10.1088/0022-3727/47/35/353001

Ikeda, 2009, Microwave enhanced ignition process for fuel mixture at elevated pressure of 1MPa

Thelen, 2013, A study of an energetically enhanced plasma ignition system for internal combustion engines, IEEE Trans Plasma Sci, 41, 3223, 10.1109/TPS.2013.2288204

Shukla, 2013, Effects of electrode geometry on transient plasma induced ignition, J Phys D Appl Phys, 46, 205201, 10.1088/0022-3727/46/20/205201

Singleton, 2011, The role of non-thermal transient plasma for enhanced flame ignition in C2H4–air, J Phys D Appl Phys, 44, 022001, 10.1088/0022-3727/44/2/022001

Lacoste, 2013, Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame, J Eng Gas Turbines Power, 135, 101501, 10.1115/1.4024961

Barbosa, 2009, Influence of a repetitively pulsed plasma on the flame stability domain of a lab-scale gas turbine combustor

Cathey, 2007, Transient plasma ignition for delay reduction in pulse detonation engines

Foucher, 2013, Influence of ozone on the combustion of n-heptane in a HCCI engine, Proc Combust Inst, 34, 3005, 10.1016/j.proci.2012.05.042

Takita, 2005, A novel design of a plasma jet torch igniter in a scramjet combustor, Proc Combust Inst, 30, 2843, 10.1016/j.proci.2004.08.110

Matsubara, 2013, Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet, Proc Combust Inst, 34, 3287, 10.1016/j.proci.2012.07.001

Do, 2010, Plasma assisted cavity flame ignition in supersonic flows, Combust Flame, 157, 1783, 10.1016/j.combustflame.2010.03.009

Leonov, 2011, Plasma-induced ethylene ignition and flameholding in confined supersonic air flow at low temperatures, IEEE Trans Plasma Sci, 39, 781, 10.1109/TPS.2010.2091512

Leonov, 2006, Plasma-assisted ignition and flameholding in high-speed flow

Leonov, 2009, Experiments on electrically controlled flameholding on a plane wall in a supersonic airflow, J Propuls Power, 25, 289, 10.2514/1.38002

Esakov, 2006, Efficiency of propane-air mixture combustion assisted by deeply undercritical MW discharge in cold high-speed airflow

Brieschenk, 2013, Laser-induced plasma ignition studies in a model scramjet engine, Combust Flame, 160, 145, 10.1016/j.combustflame.2012.08.011

Song, 2009, Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges, J Hazard Mater, 166, 523, 10.1016/j.jhazmat.2008.11.068

Lee, 2013, Plasma-assisted combustion technology for NOx reduction in industrial burners, Environ Sci Technol, 47, 10964, 10.1021/es401513t

Billig, 1993, Research on supersonic combustion, J Propuls Power, 9, 499, 10.2514/3.23652

Dooley, 2012, The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena, Combust Flame, 159, 1444, 10.1016/j.combustflame.2011.11.002

Masuya, 2002, Effects of airstream mach number on H/N plasma igniter, J Propuls Power, 18, 679, 10.2514/2.5984

Takita, 2003, Ignition and flame-holding of H2 and CH4 in high temperature airflow by a plasma torch, Combust Flame, 132, 679, 10.1016/S0010-2180(02)00518-7

Adamovich, 2009, Plasma assisted ignition and high-speed flow control: non-thermal and thermal effects, Plasma Sources Sci Technol, 18, 034018, 10.1088/0963-0252/18/3/034018

Kim, 2008, A study of plasma-stabilized diffusion flames at elevated ambient temperatures, IEEE Trans Plasma Sci, 36, 2898, 10.1109/TPS.2008.2004345

Chen, 2009, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc Combust Inst, 32, 1253, 10.1016/j.proci.2008.05.060

Suckewever A. Knite Inc. 2010. personal communication.

ElSabbagh, 2011, Measurements of rotational temperature and density of molecular nitrogen in spark-plug assisted atmospheric-pressure microwave discharges by rotational raman scattering, Jpn J Appl Phys, 50, 076101, 10.7567/JJAP.50.076101

Ju, 2011, Microscale combustion: technology development and fundamental research, Prog Energy Combust Sci, 37, 669, 10.1016/j.pecs.2011.03.001

Pavel, 2011, Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition, Opt Express, 19, 9378, 10.1364/OE.19.009378

Seurin, 2010, High-brightness pump sources using 2D VCSEL arrays, Proc SPIE, 7615, 76150F, 10.1117/12.842492

Ehn, 2015, Plasma assisted combustion: effects of O3 on large scale turbulent combustion studied with laser diagnostics and large eddy simulations, Proc Combust Inst, 35, 10.1016/j.proci.2014.05.092

Schauer, 2001, Detonation initiation studies and performance results for pulsed detonation engine applications

Serbin, 2011, Improvement of the gas turbine plasma assisted combustor characteristics

Versailles, 2012, Application of dielectric barrier discharge to improve the flashback limit of a lean premixed dump combustor, J Eng Gas Turbines Power, 134, 031501, 10.1115/1.4004237

Grundmann, 2005, Treatment of soot by dielectric barrier discharges and ozone, Plasma Chem Plasma Process, 25, 455, 10.1007/s11090-005-4992-3

Hammer, 2002, Non-thermal plasma application to the abatement of noxious emissions in automotive exhaust gases, Plasma Sources Sci Technol, 11, A196, 10.1088/0963-0252/11/3A/329

Mintoussov, 2007, Plasma-assisted combustion and fuel reforming

Mueller, 1999, Flow reactor studies and kinetic modeling of the H2/O2 reaction, Int J Chem Kinet, 31, 113, 10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0

Zheng, 2004, Ignition of premixed hydrogen/air by heated counterflow under reduced and elevated pressures, Combust Flame, 136, 168, 10.1016/j.combustflame.2003.09.016

Burke, 2010, Negative pressure dependence of mass burning rates of H2/CO/O2 diluent flames at low flame temperatures, Combust Flame, 157, 618, 10.1016/j.combustflame.2009.08.009

Maas, 1988, Ignition processes in hydrogen/oxygen mixtures, Combust Flame, 74, 53, 10.1016/0010-2180(88)90086-7

Bozhenkov, 2003, Nanosecond gas discharge ignition of H2- and CH4-containing mixtures, Combust Flame, 133, 133, 10.1016/S0010-2180(02)00564-3

Ju, 2011, Multi-timescale modeling of ignition and flame regimes of n-heptane–air mixtures near spark assisted homogeneous charge compression ignition conditions, Proc Combust Inst, 33, 1245, 10.1016/j.proci.2010.06.110

Diévart, 2012, A kinetic model for methyl decanoate combustion, Combust Flame, 159, 1793, 10.1016/j.combustflame.2012.01.002

Won, 2014, The role of low temperature fuel chemistry on turbulent flame propagation, Combust Flame, 161, 475, 10.1016/j.combustflame.2013.08.027

Arnold, 2000, Selected ion flow tube studies of air plasma cations reacting with alkylbenzenes, J Phys Chem A, 104, 928, 10.1021/jp9928199

Sun, 2010, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust Flame, 157, 1298, 10.1016/j.combustflame.2010.03.006

Lewis, 1987

Ju, 2001, Combustion limits, Appl Mech Rev, 54, 257, 10.1115/1.3097297

Lakshmisha, 1990, On the flammability limit and heat loss in flames with detailed chemistry, Symp Int Combust, 23, 433, 10.1016/S0082-0784(06)80288-2

Platt, 1990, Flammability of a weakly stretched premixed flame: the effect of radiation loss

Ju, 1997, On the extinction limit and flammability limit of non-adiabatic stretched methane–air premixed flames, J Fluid Mech, 342, 315, 10.1017/S0022112097005636

Ju, 2003, An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels, Combust Flame, 133, 483, 10.1016/S0010-2180(03)00058-0

Maruta, 1998, Extinction of low-stretched diffusion flame in microgravity, Combust Flame, 112, 181, 10.1016/S0010-2180(97)81766-X

Clavin, 1985, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog Energy Combust Sci, 11, 1, 10.1016/0360-1285(85)90012-7

Guo, 2005, The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames, Proc Combust Inst, 30, 303, 10.1016/j.proci.2004.08.177

Weinberg, 1971, A preliminary investigation of the use of focused laser beams for minimum ignition energy studies, Proc R Soc Lond A Math Phys Sci, 321, 41, 10.1098/rspa.1971.0012

Ballal, 1975, The influence of spark discharge characteristics on minimum ignition energy in flowing gases, Combust Flame, 24, 99, 10.1016/0010-2180(75)90132-7

Chen, 2011, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc Combust Inst, 33, 1219, 10.1016/j.proci.2010.05.005

Kim, 2013, Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames, Proc Combust Inst, 34, 929, 10.1016/j.proci.2012.07.035

Zhang, 2011, Spherical flame initiation and propagation with thermally sensitive intermediate kinetics, Combust Flame, 158, 1520, 10.1016/j.combustflame.2010.12.031

Michael, 2010, Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures, J Appl Phys, 108, 093308, 10.1063/1.3506401

Miles, 2013

Leonov, 2013, Studies of ignition and flame holding by non-equilibrium transient plasmas

Zhu, 2014, Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements, J Phys D Appl Phys, 47, 295203, 10.1088/0022-3727/47/29/295203

Leonov, 2006, Fast mixing by pulse discharge in high-speed flow

Leonov, 2010, Jet regime of the after spark channel decay, Phys Plasmas, 17, 053505, 10.1063/1.3429675

Starikovskaia, 2001, Hydrogen oxidation in a stoichiometric hydrogen–air mixture in the fast ionization wave, Combust Theory Model, 5, 97, 10.1088/1364-7830/5/1/306

Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-3.0 Mechanism. http://www.me.berkeley.edu/gri_mech/.

Wang, 2007

Shen, 2015, Experimental and kinetic studies of acetylene flames at elevated pressures, Proc Combust Inst, 10.1016/j.proci.2014.05.106

Anikin, 2004, Study of the oxidation of alkanes in their mixtures with oxygen and air under the action of a pulsed volume nanosecond discharge, Plasma Phys Rep, 30, 1028, 10.1134/1.1839956

Kosarev, 2009, Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6- to C5H12-containing mixtures, Combust Flame, 156, 221, 10.1016/j.combustflame.2008.07.013

Anikin, 2006, Oxidation of saturated hydrocarbons under the effect of nanosecond pulsed space discharge, J Phys D Appl Phys, 39, 3244, 10.1088/0022-3727/39/15/006

Aleksandrov, 2009, Mechanism of ignition by non-equilibrium plasma, Proc Combust Inst, 32, 205, 10.1016/j.proci.2008.06.124

Kosarev, 2008, Kinetic mechanism of plasma-assisted ignition of hydrocarbons, J Phys D Appl Phys, 41, 032002, 10.1088/0022-3727/41/3/032002

Wu, 2011, Plasma-assisted ignition below self-ignition threshold in methane, ethane, propane and butane–air mixtures, Proc Combust Inst, 33, 3219, 10.1016/j.proci.2010.06.003

Starikovskiy, 2012, Kinetics of plasma-assisted oxidation and ignition below self-ignition threshold

Yin, 2011, Ignition delay and time-resolved temperature measurements in nanosecond pulse hydrogen–air and ethylene-air plasmas at elevated initial temperatures

Niemi, 2005, Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet, Plasma Sources Sci Technol, 14, 375, 10.1088/0963-0252/14/2/021

Brackmann, 2003, Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation, Spectrochim Acta Part A Mol Biomol Spectrosc, 59, 3347, 10.1016/S1386-1425(03)00163-X

Metz, 2004, Fluorescence lifetimes of formaldehyde (H2CO) in the A band system at elevated temperatures and pressures, Spectrochim Acta Part A Mol Biomol Spectrosc, 60, 1043, 10.1016/S1386-1425(03)00335-4

Lutz, 1997

Zhao, 2008, Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether, Int J Chem Kinet, 40, 1, 10.1002/kin.20285

Kasha, 2000

Williams, 2004, Quantitative detection of singlet O2 by cavity-enhanced absorption, Opt Lett, 29, 1066, 10.1364/OL.29.001066

Starik, 2004, Possibility of initiation of combustion of CH4–O2(air) mixtures with laser-induced excitation of O2 molecules, Combust Explos Shock Waves, 40, 499, 10.1023/B:CESW.0000041401.34158.a3

Popov, 2007, The effect of nonequilibrium excitation on the ignition of hydrogen-oxygen mixtures, High Temp, 45, 261, 10.1134/S0018151X07020174

Popov, 2011, Effect of singlet oxygen O2(a1Δg) molecules produced in a gas discharge plasma on the ignition of hydrogen–oxygen mixtures, Plasma Sources Sci Technol, 20, 045002, 10.1088/0963-0252/20/4/045002

Sharipov, 2012, Kinetic mechanism of CO–H2 system oxidation promoted by excited singlet oxygen molecules, Combust Flame, 159, 16, 10.1016/j.combustflame.2011.06.015

Kee, 1985

Nomaguchi, 1988, Spark ignition of methane and methanol in ozonized air, Symp Int Combust, 1677

Halter, 2011, Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane, Energy Fuels, 25, 2909, 10.1021/ef200550m

Naidja, 2003, Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems, Prog Energy Combust Sci, 29, 155, 10.1016/S0360-1285(03)00018-2

Mantashyan, 1994, Cool flames and oscillations in hydrocarbon oxidation, Twenty-Fifth Symp Int Combust, 25, 927, 10.1016/S0082-0784(06)80728-9

Lignola, 1987, Cool flames, Prog Energy Combust Sci, 13, 75, 10.1016/0360-1285(87)90007-4

Griffiths, 1987, Thermokinetic interactions: fundamentals of spontaneous ignition and cool flames, Prog Energy Combust Sci, 13, 161, 10.1016/0360-1285(87)90010-4

Kim, 2008, Formation and role of cool flames in plasma-assisted premixed combustion, Appl Phys Lett, 92, 051503, 10.1063/1.2841894

Roettgen, 2014, Thomson scattering studies in He and He/H2 nanosecond pulsed nonequilibrium plasmas

Noguchi, 2001, Measurements of electron temperature and density of a micro-discharge plasma using laser Thomson scattering measurements of electron temperature and density of a micro-discharge plasma using laser Thomson scattering, Jpn J Appl Phys, 40, 326, 10.1143/JJAP.40.326

Zhu, 2012, Measurement of the temporal evolution of electron density in a nanosecond pulsed argon microplasma: using both Stark broadening and an OES line-ratio method, J Phys D Appl Phys, 45, 295201, 10.1088/0022-3727/45/29/295201

Gavrilenko, 1992, Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field, JETP Lett, 56, 1

Yatom, 2013, Electric field in a plasma channel in a high-pressure nanosecond discharge in hydrogen: a coherent anti-stokes raman scattering study, Phys Rev Lett, 111, 255001, 10.1103/PhysRevLett.111.255001

Lempert, 2011, Diagnostic study of four-wave-mixing-based electric-field measurements in high-pressure nitrogen plasmas, Appl Opt, 50, 5688, 10.1364/AO.50.005688

Ito, 2009, Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen, J Phys D Appl Phys, 42, 092003, 10.1088/0022-3727/42/9/092003

Starikovskaia, 2010, On electric field measurements in surface dielectric barrier discharge, J Phys D Appl Phys, 43, 124007, 10.1088/0022-3727/43/12/124007

Macko, 2001, Density of N2( X1Σ+g;v = 18) molecules in a dc glow discharge measured by cavity ringdown spectroscopy at 227 nm; validity domain of the technique, J Phys D Appl Phys, 34, 1807, 10.1088/0022-3727/34/12/307

Eckbreth, 1996

Choi, 2011, Hydroxyl radical kinetics in repetitively pulsed hydrogen–air nanosecond plasmas, IEEE Trans Plasma Sci, 39, 3288, 10.1109/TPS.2011.2163736

Uddi, 2008

Yin, 2015, Time-resolved radical species and temperature distributions in an Ar-O2-H2 mixture excited by a nanosecond pulse discharge, Proc Combust Inst, 10.1016/j.proci.2014.05.073

Miles, 2001, Laser rayleigh scattering, Meas Sci Technol, 12, R33, 10.1088/0957-0233/12/5/201

Kee, 2003

Gardiner, 1981, Refractivity of combustion gases, Combust Flame, 40, 213, 10.1016/0010-2180(81)90124-3

Aldén, 1986, Rotational CARS generation through a multiple four-color interaction, Appl Opt, 25, 4493, 10.1364/AO.25.004493

Zuzeek, 2010, Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas, J Phys D Appl Phys, 43, 124001, 10.1088/0022-3727/43/12/124001

Palmer, 1989

Kronemayer, 2007, Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry, Appl Phys B, 88, 373, 10.1007/s00340-007-2721-8

Bessler, 2003, A versatile modeling tool for nitric oxide LIF spectra

Settersten, 2009, Radiative lifetimes of NO A2Σ+(v′ = 0, 1, 2) and the electronic transition moment of the A2Σ+–X2Π system, J Chem Phys, 131, 104309

Watson, 2013, Diagnostics and modeling of stagnation flames for the validation of thermochemical combustion models for NOx predictions, Energy Fuels, 27, 7031, 10.1021/ef401223n

Guo, 2013, Measurements of H2O2 in low temperature dimethyl ether oxidation, Proc Combust Inst, 34, 573, 10.1016/j.proci.2012.05.056

Lefkowitz, 2014, Time dependent measurements of species formation in nanosecond-pulsed plasma discharges in C2H4/O2/Ar mixtures

Kossyi, 1992, Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures, Plasma Sources Sci Technol, 1, 207, 10.1088/0963-0252/1/3/011

Kosarev, 2008, Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures, Combust Flame, 154, 569, 10.1016/j.combustflame.2008.03.007

Shane Stafford, 2004, O2(a1Δg) production in He/O2 mixtures in flowing low pressure plasmas, J Appl Phys, 96, 2415

Tsuji, 1991, Dissociative excitation of CH4 by collisions with helium active species, J Chem Phys, 94, 277

Hagelaar GJM, Pitchford LC. “Bolsig+”. Available at: http://www.bolsig.laplace.univ-tlse.fr/.

Itikawa, 2009, Cross sections for electron collisions with oxygen molecules, J Phys Chem Ref Data, 38, 1, 10.1063/1.3025886

Itikawa, 2006, Cross sections for electron collisions with nitrogen molecules, J Phys Chem Ref Data, 35, 31, 10.1063/1.1937426

Yoon, 2008, Cross sections for electron collisions with hydrogen molecules, J Phys Chem Ref Data, 37, 913, 10.1063/1.2838023

Brunger, 2002, Electron–molecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules, Phys Rep, 357, 215, 10.1016/S0370-1573(01)00032-1

Itikawa, 2002, Cross sections for electron collisions with carbon dioxide, J Phys Chem Ref Data, 31, 749, 10.1063/1.1481879

Mason, 2005, Cross sections for electron collisions with water molecules, J Phys Chem Ref Data, 34, 1, 10.1063/1.1799251

Shirai, 2002, Analytic cross sections for electron collisions with hydrocarbons: CH4, C2H6, C2H4, C2H2, C3H8, and C3H6, Atomic Data Nucl Data Tables, 80, 147, 10.1006/adnd.2001.0878

Jiao, 2007, Electron impact ionization and ion reactions in n-butane, J Phys D Appl Phys, 40, 409, 10.1088/0022-3727/40/2/018

Burke, 2011, Comprehensive H2/O2 kinetic model for high – pressure combustion, Int J Chem Kinet, 44, 444, 10.1002/kin.20603

Labbe, 2015, A detailed analysis of the kinetics of methanol combustion, Combust Flame

Peukert, 2013, High temperature shock tube studies on the thermal decomposition of O3 and the reaction of dimethyl carbonate with O-atoms, J Phys Chem A, 117, 3729, 10.1021/jp400613p

Klippenstein, 2011, The role of NNH in NO formation and control, Combust Flame, 158, 774, 10.1016/j.combustflame.2010.12.013

Yang, 2015, Kinetic studies of methyl acetate pyrolysis and oxidation in a flow reactor and a low-pressure flat flame using molecular-beam mass spectrometry, Proc Combust Inst, 10.1016/j.proci.2014.05.058

Liu, 2013, Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures, Combust Flame, 160, 2654, 10.1016/j.combustflame.2013.06.032

Yang, 2015

Starik, 2010, On the influence of singlet oxygen molecules on the speed of flame propagation in methane–air mixture, Combust Flame, 157, 313, 10.1016/j.combustflame.2009.11.008

Nagaraja, 2014, Ignition of hydrogen–air mixtures using pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry, Combust Flame, 161, 1026, 10.1016/j.combustflame.2013.10.007

Bao, 2008