O2 sensing in hypoxic pulmonary vasoconstriction: the mitochondrial door re-opens

Respiratory Physiology & Neurobiology - Tập 132 - Trang 81-91 - 2002
Gregory B Waypa1, Paul T Schumacker1
1Department of Medicine MC6026, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA

Tài liệu tham khảo

Agani, 2000, The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia, J. Biol. Chem., 275, 35863, 10.1074/jbc.M005643200 Archer, 1993, A redox-based O2 sensor in rat pulmonary vasculature, Circ. Res., 73, 1100, 10.1161/01.RES.73.6.1100 Archer, 1998, Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes, J. Clin. Invest., 101, 2319, 10.1172/JCI333 Archer, 1999, O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase, Proc. Natl. Acad. Sci. USA, 96, 7944, 10.1073/pnas.96.14.7944 Archer, 2000, Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation, Adv. Exp. Med. Biol., 475, 219 Archer, 2001, Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5, FASEB J., 15, 1801, 10.1096/fj.00-0649fje Barman, 1998, Potassium channels modulate hypoxic pulmonary vasoconstriction, Am. J. Physiol., 275, L64 Beavis, 1996, The mitochondrial inner membrane anion channel is inhibited by DIDS, J. Bioenerg. Biomembr., 28, 207, 10.1007/BF02110652 Bodi, 1995, Cell-specificity and signaling pathway of endothelin-1 gene regulation by hypoxia, Cardiovasc. Res., 30, 975, 10.1016/0008-6363(95)00164-6 Buescher, 1991, Energy state and vasomotor tone in hypoxic pig lungs, J. Appl. Physiol., 70, 1874, 10.1152/jappl.1991.70.4.1874 Bunn, 1996, Oxygen sensing and molecular adaptation to hypoxia, Physiol. Rev., 76, 839, 10.1152/physrev.1996.76.3.839 Chandel, 1998, Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA, 95, 11715, 10.1073/pnas.95.20.11715 Chandel, 2000, Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing, J. Biol. Chem., 275, 25130, 10.1074/jbc.M001914200 Coppock, 2001, Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels, Am. J. Physiol., 281, L1 Dipp, 2001, Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ, Circ. Res., 89, 77, 10.1161/hh1301.093616 Dipp, 2001, Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle, Am. J. Physiol., 281, L318 Duranteau, 1998, Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes, J. Biol. Chem., 273, 11619, 10.1074/jbc.273.19.11619 Gelband, 1997, Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels, Circulation, 96, 3647, 10.1161/01.CIR.96.10.3647 Grimminger, 1995, Effects of NADPH oxidase inhibitors on hypoxic vasoconstriction in buffer-perfused rabbit lungs, Am. J. Physiol., 268, L747 Hasunuma, 1991, Effects of K+ channel blockers on vascular tone in the perfused rat lung, Am. Rev. Respir. Dis., 144, 884, 10.1164/ajrccm/144.4.884 Holland, 1973, Mechanism of action of the hypoglycemic agent diphenyleneiodonium, J. Biol. Chem., 248, 6050, 10.1016/S0021-9258(19)43506-0 Hu, 1998, Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand, Biochem. Biophys. Res. Commun., 245, 894, 10.1006/bbrc.1998.8543 Jones, 1982, Intracellular oxygen supply during hypoxia, Am. J. Physiol., 243, C247, 10.1152/ajpcell.1982.243.5.C247 Jones, 1986, Analysis of intracellular oxygenation of isolated adult cardiac myocytes, Am. J. Physiol., 250, C384, 10.1152/ajpcell.1986.250.3.C384 Jones, 2000, Hydrogen peroxide—an intracellular signal in the pulmonary circulation: involvement in hypoxic pulmonary vasoconstriction, Pharmacol. Ther., 88, 153, 10.1016/S0163-7258(00)00089-9 Jones, 2000, NADPH oxidase: a universal oxygen sensor?, Free Radic. Biol. Med., 29, 416, 10.1016/S0891-5849(00)00320-8 Killilea, 2000, Free radical production in hypoxic pulmonary artery smooth muscle cells, Am. J. Physiol., 279, L408 Lazor, 1996, Endothelin-1 does not mediate the endothelium-dependent hypoxic contractions of small pulmonary arteries in rats, Chest, 110, 189, 10.1378/chest.110.1.189 Leach, 2000, Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries, Am. J. Physiol., 278, L294 Leach, 2001, Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor, J. Physiol., Lond., 536, 211, 10.1111/j.1469-7793.2001.00211.x Liu, 2001, Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence, Am. J. Physiol., 280, L856 Majander, 1994, Diphenyleneiodonium inhibits reduction of iron–sulfur clusters in the mitochondrial NADH–ubiquinone oxidoreductase (complex I), J. Biol. Chem., 269, 21037, 10.1016/S0021-9258(17)31926-9 Marshall, 1994, Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 1. Physiologic concepts, Intensive Care Med., 20, 291, 10.1007/BF01708968 Marshall, 1996, Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction, Am. J. Respir. Cell Mol. Biol., 15, 633, 10.1165/ajrcmb.15.5.8918370 McMurtry, 1984, Angiotensin is not required for hypoxic constriction in salt solution-perfused rat lungs, J. Appl. Physiol., 56, 375, 10.1152/jappl.1984.56.2.375 Michelakis, 2001, The pathobiology of pulmonary hypertension. Smooth muscle cells and ion channels, Clin. Chest Med., 22, 419, 10.1016/S0272-5231(05)70281-1 Michelakis, 1995, Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing, Physiol. Res., 44, 361 Michelakis, 1997, Potassium channel diversity in vascular smooth muscle cells, Can. J. Physiol. Pharmacol., 75, 889, 10.1139/y97-111 Mohazzab, 1995, Potential role of NADH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses, Am. J. Physiol., 269, L637 Monaco, 1995, NO and H2O2 mechanisms of guanylate cyclase activation in oxygen-dependent responses of rat pulmonary circulation, Am. J. Physiol., 268, L546 Morio, 2002, Ca2+ release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs, J. Appl. Physiol., 92, 527, 10.1152/jappl.2002.92.2.527 Parsons, 1966, Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria, Ann. N. Y. Acad. Sci., 137, 643, 10.1111/j.1749-6632.1966.tb50188.x Pearlstein D.P., Ali, M.H., Mungai, P.T., Hynes, K.L., Gewertz, B.L., Schumacker, P.T., 2002. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler. Thromb. Vasc. Biol. 566–573. Post, 1995, [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization, Circ. Res., 77, 131, 10.1161/01.RES.77.1.131 Reeve, 1995, Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue, Exp. Physiol., 80, 825, 10.1113/expphysiol.1995.sp003890 Reeve, 2001, Alterations in a redox oxygen sensing mechanism in chronic hypoxia, J. Appl. Physiol., 90, 2249, 10.1152/jappl.2001.90.6.2249 Richter, 1995, Oxidants in mitochondria: from physiology to diseases, Biochim. Biophys. Acta, 1271, 67, 10.1016/0925-4439(95)00012-S Robertson, 2001, Hypoxia induces the release of a pulmonary-selective, Ca2+-sensitising, vasoconstrictor from the perfused rat lung, Cardiovasc. Res., 50, 145, 10.1016/S0008-6363(01)00192-4 Rounds, 1981, Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs, Circ. Res., 48, 393, 10.1161/01.RES.48.3.393 Sato, 2000, Mechanism of hypoxic pulmonary vasoconstriction involves ET(A) receptor-mediated inhibition of K(ATP) channel, Am. J. Physiol., 278, L434 Sato, 2001, Hydrogen peroxide induces Src family tyrosine kinase-dependent activation of Xenopus eggs, Dev. Growth Differ., 43, 55, 10.1046/j.1440-169x.2001.00554.x Semenza, 2000, Expression of hypoxia-inducible factor 1: mechanisms and consequences, Biochem. Pharmacol., 59, 47, 10.1016/S0006-2952(99)00292-0 Semenza, 2001, HIF-1, O2 and the 3 PHDs: how animal cells signal hypoxia to the nucleus, Cell, 107, 1, 10.1016/S0092-8674(01)00518-9 Semenza, 2001, Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease, Pediatr. Res., 49, 614, 10.1203/00006450-200105000-00002 Semenza, 2001, HIF-1 and mechanisms of hypoxia sensing, Curr. Opin. Cell Biol., 13, 167, 10.1016/S0955-0674(00)00194-0 Sham, 2000, Effects of hypoxia in porcine pulmonary arterial myocytes: roles of Kv channel and endothelin-1, Am. J. Physiol., 279, L262 Sohal, 1996, Oxidative stress, caloric restriction and aging, Science, 273, 59, 10.1126/science.273.5271.59 Stolk, 1994, Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol, Am. J. Respir. Cell Mol. Biol., 11, 95, 10.1165/ajrcmb.11.1.8018341 Sweeney, 2000, Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels, Respir. Res., 1, 40, 10.1186/rr11 Sylvester, 2001, Hypoxic pulmonary vasoconstriction: a radical view, Circ. Res., 88, 1228, 10.1161/hh1201.093167 Terada, 1996, Hypoxia-reoxygenation increases O2− efflux which injures endothelial cells by an extracellular mechanism, Am. J. Physiol., 270, H945 Urena, 1996, Contrasting effects of hypoxia on cytosolic Ca2+ spikes in conduit and resistance myocytes of the rabbit pulmonary artery, J. Physiol., Lond., 496, 103, 10.1113/jphysiol.1996.sp021668 von Euler, 1946, Observations on the pulmonary arterial blood pressure of the cat, Acta Physiol. Scand., 12, 301, 10.1111/j.1748-1716.1946.tb00389.x Wang, 2001, Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell survival, J. Biol. Chem., 276, 28364, 10.1074/jbc.M102693200 Ward, 1999, Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right?, Respir. Physiol., 115, 261, 10.1016/S0034-5687(99)00025-0 Ward, 1995, The role of the endothelium in hypoxic pulmonary vasoconstriction, Exp. Physiol., 80, 793, 10.1113/expphysiol.1995.sp003887 Waypa, 2000, Oxidant-increased endothelial permeability: prevention with phosphodiesterase inhibition vs. cAMP production, J. Appl. Physiol., 88, 835, 10.1152/jappl.2000.88.3.835 Waypa, 2001, Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing, Circ. Res., 88, 1259, 10.1161/hh1201.091960 Weir, 1995, The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels, FASEB J., 9, 183, 10.1096/fasebj.9.2.7781921 Weir, 1998, Pulmonary vasoconstriction, oxygen sensing, and the role of ion channels: Thomas A. Neff lecture, Chest, 114, 17S, 10.1378/chest.114.1_Supplement.17S-a Weissmann, 1995, Hypoxic vasoconstriction in buffer-perfused rabbit lungs, Respir. Physiol., 100, 159, 10.1016/0034-5687(94)00133-K Weissmann, 1998, Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs, Am. J. Physiol., 274, L721 Weissmann, 2001, Hypoxic pulmonary vasoconstriction: a multifactorial response?, Am. J. Physiol., 281, L314 Wilson, 2001, Adp-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. a primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction, J. Biol. Chem., 276, 11180, 10.1074/jbc.M004849200 Yamashita, 2001, Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2 and p300/CBP, J. Biol. Chem., 276, 12645, 10.1074/jbc.M011344200 Zhang, 1997, Pulmonary artery smooth muscle cell [Ca2+]i and contraction: responses to diphenyleneiodonium and hypoxia, Am. J. Physiol., 273, L603 Zhao, 1996, Hypoxia-induced pulmonary arterial contraction appears to be dependent on myosin light chain phosphorylation, Am. J. Physiol., 271, L768 Zhu, 1999, Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells, Proc. Natl. Acad. Sci. USA, 96, 14742, 10.1073/pnas.96.26.14742