Recent development of ZrCo-based BMGs and their composites
Tài liệu tham khảo
Wada, 2011, Formation and bioactivation of Zr-Al-Co bulk metallic glasses, J. Mater. Res., 24, 2941, 10.1557/jmr.2009.0348
Tan, 2011, Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass, Intermetallics, 19, 567, 10.1016/j.intermet.2010.12.006
Tan, 2012, Formation of Zr–Co–Al bulk metallic glasses with high strength and large plasticity, Intermetallics, 31, 282, 10.1016/j.intermet.2012.08.003
Chen, 2020, Zr-Co-Al bulk metallic glass composites containing B2 ZrCo via rapid quenching and annealing, J. Alloys Compd., 820, 10.1016/j.jallcom.2019.153079
Hua, 2011, Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability, J. Mater. Res., 26, 539, 10.1557/jmr.2010.65
Zhang, 2010, Enhancement of glass-forming ability and bio-corrosion resistance of Zr–Co–Al bulk metallic glasses by the addition of Ag, J. Alloys Compd., 504, S163, 10.1016/j.jallcom.2010.02.078
Zhu, 2018, Formation of Zr-based bulk metallic glass with large amount of yttrium addition, Intermetallics, 92, 55, 10.1016/j.intermet.2017.08.018
Han, 2017, Zr-Al-Co-Cu bulk metallic glasses for biomedical devices applications, J. Alloys Compd., 729, 144, 10.1016/j.jallcom.2017.09.144
Li, 2018, Significantly enhanced mechanical properties of ZrAlCo bulk amorphous alloy by microalloying with Ta, Intermetallics, 93, 162, 10.1016/j.intermet.2017.12.008
Wang, 2004, Composition optimization of the Al–Co–Zr bulk metallic glasses, Scr. Mater., 50, 829, 10.1016/j.scriptamat.2003.12.014
Zhang, 2002, New glassy Zr-Al-Fe and Zr-Al-Co alloys with a large supercooled liquid region, Mater. Trans., 43, 267, 10.2320/matertrans.43.267
Matsuda, 2013, Enhancement of ductility in B2-type Zr–Co–Ni alloys with deformation-induced martensite and microcrack formation, Intermetallics, 36, 45, 10.1016/j.intermet.2013.01.008
Matsuda, 2011, Enhancement of ductility in B2-type Zr–Co–Pd alloys with martensitic transformation, Intermetallics, 19, 894, 10.1016/j.intermet.2011.02.006
Matsuda, 2009, Ductility enhancement in B2-type Zr-Co-Ni alloys with martensitic transformation, Mater. Trans., 50, 2335, 10.2320/matertrans.M2009182
Li, 2013, Enhanced strength and transformation-induced plasticity in rapidly solidified Zr–Co–(Al) alloys, Scr. Mater., 68, 897, 10.1016/j.scriptamat.2013.02.029
Li, 2013, On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy, Intermetallics, 35, 116, 10.1016/j.intermet.2012.12.009
Li, 2017, Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification, J. Mater. Res., 1
Kim, 2017, Formation of crystalline phase in the glass matrix of Zr-Co-Al glass-matrix composites and its effect on their mechanical properties, Met. Mater. Int., 23, 1216, 10.1007/s12540-017-6851-1
Chen, 2020, A novel strategy to design the Zr-Co-Al BMG composites containing only the B2-ZrCo phase, Intermetallics, 123, 10.1016/j.intermet.2020.106821
Chen, 2020, Formation of the B2–ZrCo phase and micro-hardness evolution in Zr–Co–Al BMGs via conventional and flash annealing, J. Alloys Compd., 834, 10.1016/j.jallcom.2020.154230
Fan, 2007, Effect of microstructures on the compressive deformation and fracture behaviors of Zr47Cu46Al7 bulk metallic glass composites, J. Non-Cryst. Solids, 353, 4707, 10.1016/j.jnoncrysol.2007.06.062
Kuo, 2014, Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys, J. Alloys Compd., 590, 453, 10.1016/j.jallcom.2013.12.156
Kosiba, 2017, Transient nucleation and microstructural design in flash-annealed bulk metallic glasses, Acta Mater., 127, 416, 10.1016/j.actamat.2017.01.059
Song, 2018, Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites, Mater. Des., 139, 132, 10.1016/j.matdes.2017.11.008
Okulov, 2015, Flash Joule heating for ductilization of metallic glasses, Nature Commun., 6, 7932, 10.1038/ncomms8932
Kosiba, 2017, Inductive flash-annealing of bulk metallic glasses, Sci. Rep., 7, 2151, 10.1038/s41598-017-02376-x
Inoue, 2011, Recent development and application products of bulk glassy alloys, Acta Mater., 59, 2243, 10.1016/j.actamat.2010.11.027
Nishiyama, 2012, The world's biggest glassy alloy ever made, Intermetallics, 30, 19, 10.1016/j.intermet.2012.03.020
Lou, 2011, 73 mm-diameter bulk metallic glass rod by copper mould casting, Appl. Phys. Lett., 99, 10.1063/1.3621862
Xu, 2004, Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.245504
Zheng, 2007, High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys, J. Appl. Phys., 102, 10.1063/1.2821755
Shen, 2005, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett., 86, 10.1063/1.1897426
Men, 2006, Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy, J. Mater. Res., 21, 958, 10.1557/jmr.2006.0109
Tang, 2010, TiZr-base bulk metallic glass with over 50 mm in diameter, J. Mater. Sci. Technol., 26, 481, 10.1016/S1005-0302(10)60077-1
Zeng, 2009, Ni-rich bulk metallic glasses with high glass-forming ability and good metallic properties, Mater. Trans., 50, 2441, 10.2320/matertrans.MRA2008453
Schroers, 2004, Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system, Appl. Phys. Lett., 84, 3666, 10.1063/1.1738945
Jiang, 2007, La-based bulk metallic glasses with critical diameter up to 30mm, Acta Mater., 55, 4409, 10.1016/j.actamat.2007.04.021
Qiao, 2016, Metallic glass matrix composites, Mater. Sci. Eng. R Rep., 100, 1, 10.1016/j.mser.2015.12.001
Wang, 2004, Bulk metallic glasses, Mater. Sci. Eng. R Rep, 44, 45
Schroers, 2010, Processing of bulk metallic glass, Adv. Mater., 22, 1566, 10.1002/adma.200902776
Jansson, 1984, Crystallization behaviour of amorphous Zr1-xCox alloys with 0.20 ≤ x ≤ 0.41, Mater. Res. Bull., 19, 1091, 10.1016/0025-5408(84)90225-3
Buschow, 1982, Crystallization of amorphous ZrCo alloys, J. Alloy Compd., 85, 221
Yamaguchi, 2005, Room-temperature tensile property and fracture behavior of recrystallized B2-type CoZr intermetallic compound, Scr. Mater., 52, 39, 10.1016/j.scriptamat.2004.09.002
Li, 2016, Mechanical properties of the novel B2-type binary Zr–Co alloys containing the B33 phase, Int. J. Mater. Res., 107, 4, 10.3139/146.111348
Kaneno, 2008, Tensile properties of recrystallized B2 CoZr intermetallic alloys, J. Alloys Compd., 456, 125, 10.1016/j.jallcom.2007.02.067
François, 1994, A TEM investigation of the deformation microstructure of CoZr and Co40Ni10Zr50 ordered alloys, Intermetallics, 2, 9, 10.1016/0966-9795(94)90046-9
Yu, 2005, Excellent glass-forming ability in simple Cu50Zr50-based alloys, J. Non-Cryst. Solids, 351, 1328, 10.1016/j.jnoncrysol.2005.03.012
Mei-Bo, 2004, Binary Cu–Zr bulk metallic glasses, Chin. Phys. Lett., 21, 901, 10.1088/0256-307X/21/5/039
Hasegawa, 2005, Comparative study on glassy phase stabilities of Zr-Co-Al and Zr-Ni-Al metallic glasses, Mater. Trans., 46, 2785, 10.2320/matertrans.46.2785
Zhang, 2004, Optimum Zr–Al–Co bulk metallic glass composition Zr53Al23.5Co23.5, Intermetallics, 12, 1275, 10.1016/j.intermet.2004.07.004
Qin, 2015, On the formation, mechanical properties and crystallization behaviors of a Zr56Co24Al20 bulk metallic glass, J. Alloys Compd., 647, 204, 10.1016/j.jallcom.2015.04.241
Dong, 2019, A comparative study of glass-forming ability, crystallization kinetics and mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses, J. Alloys Compd., 785, 422, 10.1016/j.jallcom.2019.01.180
Qin, 2016, Formation and phase evolution of liquid phase-separated metallic glasses with double glass transition, crystallization and melting, Mater. Today Commun., 8, 64, 10.1016/j.mtcomm.2016.06.001
Han, 2014, Phase separation in Zr56-xGdxCo28Al16 metallic glasses (0⩽x⩽20), Acta Mater., 66, 262, 10.1016/j.actamat.2013.11.013
Tan, 2019, Effect of Fe addition on glass forming ability and mechanical properties in Zr–Co–Al–(Fe) bulk metallic glasses, Mater. Sci. Eng. A, 539, 124, 10.1016/j.msea.2012.01.068
Park, 2007, In situ formation of two glassy phases in the Nd–Zr–Al–Co alloy system, Scr. Mater., 56, 197, 10.1016/j.scriptamat.2006.10.020
Zhu, 2019, Formation of two-glassy-phase bulk metallic glass in Zr-Co-Al-Y immiscible system, J. Alloys Compd., 781, 8, 10.1016/j.jallcom.2018.12.005
Li, 2018, Significantly enhanced mechanical properties of ZrAlCo bulk amorphous alloy by microalloying with Ta, Intermetallics, 93, 162, 10.1016/j.intermet.2017.12.008
Tan, 2011, Correlation between internal states and plasticity in bulk metallic glass, Appl. Phys. Lett., 98, 10.1063/1.3580774
Mohammadi Rahvard, 2018, Enhanced plasticity of Zr56Co24Ag4Al16 and Zr56Co22Cu6Al16 bulk metallic glasses by controlling the casting temperature, J. Non-Cryst. Solids, 491, 114, 10.1016/j.jnoncrysol.2018.03.053
Wang, 2017, Free volume gradient effect on mechanical properties of metallic glasses, Scr. Mater., 130, 12, 10.1016/j.scriptamat.2016.11.003
Haruyama, 2013, Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses, Acta Mater., 61, 3224, 10.1016/j.actamat.2013.02.010
Launey, 2008, Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass, Acta Mater., 56, 500, 10.1016/j.actamat.2007.10.007
Shi, 2016, Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr26.13Cu15.75Ni10.12Al10 bulk metallic glass, J. Alloys Compd., 669, 167, 10.1016/j.jallcom.2016.01.239
Zhang, 2009, Quantification of the free volume in Zr45Cu39.3Al7Ag8.7 bulk metallic glasses subjected to plastic deformation by calorimetric and dilatometric measurements, J. Alloys Compd., 488, 65, 10.1016/j.jallcom.2009.08.091
Xu, 2010, Quantitative determination of free volume in Pd40Ni40P20 bulk metallic glass, Scr. Mater., 62, 674, 10.1016/j.scriptamat.2010.01.025
Haruyama, 2010, Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass, Acta Mater., 58, 1829, 10.1016/j.actamat.2009.11.025
Pauly, 2009, Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites, Acta Mater., 57, 5445, 10.1016/j.actamat.2009.07.042
Wang, 2017, Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr-Co-Cu-Al metallic glasses, Acta Mater., 132, 298, 10.1016/j.actamat.2017.04.044
Takeuchi, 2005, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46, 2817, 10.2320/matertrans.46.2817
Zhu, 2014, Zr-based bulk metallic glass composite with in situ precipitated nanocrystals, J. Alloys Compd., 586, 155, 10.1016/j.jallcom.2013.10.050
Hu, 2016, Evaluation of thermal stability and isochronal crystallization kinetics in the Ti40Zr25Ni8Cu9Be18 bulk metallic glass, J. Non-Cryst. Solids, 432, 254, 10.1016/j.jnoncrysol.2015.10.018
Kissinger, 1957, Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702, 10.1021/ac60131a045
Tang, 2016, Formation and dilatation of shear bands in a Cu-Zr metallic glass: a free volume perspective, J. Appl. Phys., 120, 10.1063/1.4972189
Singh, 2016, Crystallization behavior and mechanical properties of (Al90Fe5Ce5)100-xTix amorphous alloys, J. Alloys Compd., 687, 990, 10.1016/j.jallcom.2016.06.272
Singh, 2015, Effect of cooling rate on the crystallization and mechanical behaviour of Zr–Ga–Cu–Ni metallic glass composition, J. Alloys Compd., 648, 456, 10.1016/j.jallcom.2015.06.275
Singh, 2013, Hydrogenation of (Zr69.5Al7.5Cu12Ni11)100-xTix quasicrystalline alloys and its effect on their structural and microhardness behavior, J. Non-Cryst. Solids, 380, 11, 10.1016/j.jnoncrysol.2013.08.024
Singh, 2010, Indentation characteristics of metallic glass and nanoquasicrystal-glass composite in Zr–Al (Ga)–Cu–Ni alloys, Intermetallics, 18, 2445, 10.1016/j.intermet.2010.08.044
Singh, 2011, Nanoindentation characteristics of Zr69.5Al7.5-xGaxCu12Ni11 glasses and their nanocomposites, J. Alloys Compd., 509, 8657, 10.1016/j.jallcom.2011.06.076
Tang, 2004, Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques, Mater. Sci. Eng. A, 384, 215, 10.1016/j.msea.2004.06.013