Recent development of ZrCo-based BMGs and their composites

Journal of Non-Crystalline Solids - Tập 546 - Trang 120288 - 2020
Yu Chen1, Chunguang Tang2, Jian-Zhong Jiang1
1International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People’s Republic of China
2Energy Change Institute, The Australian National University, Canberra, Australia

Tài liệu tham khảo

Wada, 2011, Formation and bioactivation of Zr-Al-Co bulk metallic glasses, J. Mater. Res., 24, 2941, 10.1557/jmr.2009.0348 Tan, 2011, Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass, Intermetallics, 19, 567, 10.1016/j.intermet.2010.12.006 Tan, 2012, Formation of Zr–Co–Al bulk metallic glasses with high strength and large plasticity, Intermetallics, 31, 282, 10.1016/j.intermet.2012.08.003 Chen, 2020, Zr-Co-Al bulk metallic glass composites containing B2 ZrCo via rapid quenching and annealing, J. Alloys Compd., 820, 10.1016/j.jallcom.2019.153079 Hua, 2011, Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability, J. Mater. Res., 26, 539, 10.1557/jmr.2010.65 Zhang, 2010, Enhancement of glass-forming ability and bio-corrosion resistance of Zr–Co–Al bulk metallic glasses by the addition of Ag, J. Alloys Compd., 504, S163, 10.1016/j.jallcom.2010.02.078 Zhu, 2018, Formation of Zr-based bulk metallic glass with large amount of yttrium addition, Intermetallics, 92, 55, 10.1016/j.intermet.2017.08.018 Han, 2017, Zr-Al-Co-Cu bulk metallic glasses for biomedical devices applications, J. Alloys Compd., 729, 144, 10.1016/j.jallcom.2017.09.144 Li, 2018, Significantly enhanced mechanical properties of ZrAlCo bulk amorphous alloy by microalloying with Ta, Intermetallics, 93, 162, 10.1016/j.intermet.2017.12.008 Wang, 2004, Composition optimization of the Al–Co–Zr bulk metallic glasses, Scr. Mater., 50, 829, 10.1016/j.scriptamat.2003.12.014 Zhang, 2002, New glassy Zr-Al-Fe and Zr-Al-Co alloys with a large supercooled liquid region, Mater. Trans., 43, 267, 10.2320/matertrans.43.267 Matsuda, 2013, Enhancement of ductility in B2-type Zr–Co–Ni alloys with deformation-induced martensite and microcrack formation, Intermetallics, 36, 45, 10.1016/j.intermet.2013.01.008 Matsuda, 2011, Enhancement of ductility in B2-type Zr–Co–Pd alloys with martensitic transformation, Intermetallics, 19, 894, 10.1016/j.intermet.2011.02.006 Matsuda, 2009, Ductility enhancement in B2-type Zr-Co-Ni alloys with martensitic transformation, Mater. Trans., 50, 2335, 10.2320/matertrans.M2009182 Li, 2013, Enhanced strength and transformation-induced plasticity in rapidly solidified Zr–Co–(Al) alloys, Scr. Mater., 68, 897, 10.1016/j.scriptamat.2013.02.029 Li, 2013, On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy, Intermetallics, 35, 116, 10.1016/j.intermet.2012.12.009 Li, 2017, Microstructure and mechanical properties of Zr–Co–Al alloys prepared by rapid solidification, J. Mater. Res., 1 Kim, 2017, Formation of crystalline phase in the glass matrix of Zr-Co-Al glass-matrix composites and its effect on their mechanical properties, Met. Mater. Int., 23, 1216, 10.1007/s12540-017-6851-1 Chen, 2020, A novel strategy to design the Zr-Co-Al BMG composites containing only the B2-ZrCo phase, Intermetallics, 123, 10.1016/j.intermet.2020.106821 Chen, 2020, Formation of the B2–ZrCo phase and micro-hardness evolution in Zr–Co–Al BMGs via conventional and flash annealing, J. Alloys Compd., 834, 10.1016/j.jallcom.2020.154230 Fan, 2007, Effect of microstructures on the compressive deformation and fracture behaviors of Zr47Cu46Al7 bulk metallic glass composites, J. Non-Cryst. Solids, 353, 4707, 10.1016/j.jnoncrysol.2007.06.062 Kuo, 2014, Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys, J. Alloys Compd., 590, 453, 10.1016/j.jallcom.2013.12.156 Kosiba, 2017, Transient nucleation and microstructural design in flash-annealed bulk metallic glasses, Acta Mater., 127, 416, 10.1016/j.actamat.2017.01.059 Song, 2018, Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites, Mater. Des., 139, 132, 10.1016/j.matdes.2017.11.008 Okulov, 2015, Flash Joule heating for ductilization of metallic glasses, Nature Commun., 6, 7932, 10.1038/ncomms8932 Kosiba, 2017, Inductive flash-annealing of bulk metallic glasses, Sci. Rep., 7, 2151, 10.1038/s41598-017-02376-x Inoue, 2011, Recent development and application products of bulk glassy alloys, Acta Mater., 59, 2243, 10.1016/j.actamat.2010.11.027 Nishiyama, 2012, The world's biggest glassy alloy ever made, Intermetallics, 30, 19, 10.1016/j.intermet.2012.03.020 Lou, 2011, 73 mm-diameter bulk metallic glass rod by copper mould casting, Appl. Phys. Lett., 99, 10.1063/1.3621862 Xu, 2004, Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.245504 Zheng, 2007, High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys, J. Appl. Phys., 102, 10.1063/1.2821755 Shen, 2005, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett., 86, 10.1063/1.1897426 Men, 2006, Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy, J. Mater. Res., 21, 958, 10.1557/jmr.2006.0109 Tang, 2010, TiZr-base bulk metallic glass with over 50 mm in diameter, J. Mater. Sci. Technol., 26, 481, 10.1016/S1005-0302(10)60077-1 Zeng, 2009, Ni-rich bulk metallic glasses with high glass-forming ability and good metallic properties, Mater. Trans., 50, 2441, 10.2320/matertrans.MRA2008453 Schroers, 2004, Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system, Appl. Phys. Lett., 84, 3666, 10.1063/1.1738945 Jiang, 2007, La-based bulk metallic glasses with critical diameter up to 30mm, Acta Mater., 55, 4409, 10.1016/j.actamat.2007.04.021 Qiao, 2016, Metallic glass matrix composites, Mater. Sci. Eng. R Rep., 100, 1, 10.1016/j.mser.2015.12.001 Wang, 2004, Bulk metallic glasses, Mater. Sci. Eng. R Rep, 44, 45 Schroers, 2010, Processing of bulk metallic glass, Adv. Mater., 22, 1566, 10.1002/adma.200902776 Jansson, 1984, Crystallization behaviour of amorphous Zr1-xCox alloys with 0.20 ≤ x ≤ 0.41, Mater. Res. Bull., 19, 1091, 10.1016/0025-5408(84)90225-3 Buschow, 1982, Crystallization of amorphous ZrCo alloys, J. Alloy Compd., 85, 221 Yamaguchi, 2005, Room-temperature tensile property and fracture behavior of recrystallized B2-type CoZr intermetallic compound, Scr. Mater., 52, 39, 10.1016/j.scriptamat.2004.09.002 Li, 2016, Mechanical properties of the novel B2-type binary Zr–Co alloys containing the B33 phase, Int. J. Mater. Res., 107, 4, 10.3139/146.111348 Kaneno, 2008, Tensile properties of recrystallized B2 CoZr intermetallic alloys, J. Alloys Compd., 456, 125, 10.1016/j.jallcom.2007.02.067 François, 1994, A TEM investigation of the deformation microstructure of CoZr and Co40Ni10Zr50 ordered alloys, Intermetallics, 2, 9, 10.1016/0966-9795(94)90046-9 Yu, 2005, Excellent glass-forming ability in simple Cu50Zr50-based alloys, J. Non-Cryst. Solids, 351, 1328, 10.1016/j.jnoncrysol.2005.03.012 Mei-Bo, 2004, Binary Cu–Zr bulk metallic glasses, Chin. Phys. Lett., 21, 901, 10.1088/0256-307X/21/5/039 Hasegawa, 2005, Comparative study on glassy phase stabilities of Zr-Co-Al and Zr-Ni-Al metallic glasses, Mater. Trans., 46, 2785, 10.2320/matertrans.46.2785 Zhang, 2004, Optimum Zr–Al–Co bulk metallic glass composition Zr53Al23.5Co23.5, Intermetallics, 12, 1275, 10.1016/j.intermet.2004.07.004 Qin, 2015, On the formation, mechanical properties and crystallization behaviors of a Zr56Co24Al20 bulk metallic glass, J. Alloys Compd., 647, 204, 10.1016/j.jallcom.2015.04.241 Dong, 2019, A comparative study of glass-forming ability, crystallization kinetics and mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses, J. Alloys Compd., 785, 422, 10.1016/j.jallcom.2019.01.180 Qin, 2016, Formation and phase evolution of liquid phase-separated metallic glasses with double glass transition, crystallization and melting, Mater. Today Commun., 8, 64, 10.1016/j.mtcomm.2016.06.001 Han, 2014, Phase separation in Zr56-xGdxCo28Al16 metallic glasses (0⩽x⩽20), Acta Mater., 66, 262, 10.1016/j.actamat.2013.11.013 Tan, 2019, Effect of Fe addition on glass forming ability and mechanical properties in Zr–Co–Al–(Fe) bulk metallic glasses, Mater. Sci. Eng. A, 539, 124, 10.1016/j.msea.2012.01.068 Park, 2007, In situ formation of two glassy phases in the Nd–Zr–Al–Co alloy system, Scr. Mater., 56, 197, 10.1016/j.scriptamat.2006.10.020 Zhu, 2019, Formation of two-glassy-phase bulk metallic glass in Zr-Co-Al-Y immiscible system, J. Alloys Compd., 781, 8, 10.1016/j.jallcom.2018.12.005 Li, 2018, Significantly enhanced mechanical properties of ZrAlCo bulk amorphous alloy by microalloying with Ta, Intermetallics, 93, 162, 10.1016/j.intermet.2017.12.008 Tan, 2011, Correlation between internal states and plasticity in bulk metallic glass, Appl. Phys. Lett., 98, 10.1063/1.3580774 Mohammadi Rahvard, 2018, Enhanced plasticity of Zr56Co24Ag4Al16 and Zr56Co22Cu6Al16 bulk metallic glasses by controlling the casting temperature, J. Non-Cryst. Solids, 491, 114, 10.1016/j.jnoncrysol.2018.03.053 Wang, 2017, Free volume gradient effect on mechanical properties of metallic glasses, Scr. Mater., 130, 12, 10.1016/j.scriptamat.2016.11.003 Haruyama, 2013, Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses, Acta Mater., 61, 3224, 10.1016/j.actamat.2013.02.010 Launey, 2008, Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass, Acta Mater., 56, 500, 10.1016/j.actamat.2007.10.007 Shi, 2016, Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr26.13Cu15.75Ni10.12Al10 bulk metallic glass, J. Alloys Compd., 669, 167, 10.1016/j.jallcom.2016.01.239 Zhang, 2009, Quantification of the free volume in Zr45Cu39.3Al7Ag8.7 bulk metallic glasses subjected to plastic deformation by calorimetric and dilatometric measurements, J. Alloys Compd., 488, 65, 10.1016/j.jallcom.2009.08.091 Xu, 2010, Quantitative determination of free volume in Pd40Ni40P20 bulk metallic glass, Scr. Mater., 62, 674, 10.1016/j.scriptamat.2010.01.025 Haruyama, 2010, Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass, Acta Mater., 58, 1829, 10.1016/j.actamat.2009.11.025 Pauly, 2009, Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites, Acta Mater., 57, 5445, 10.1016/j.actamat.2009.07.042 Wang, 2017, Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr-Co-Cu-Al metallic glasses, Acta Mater., 132, 298, 10.1016/j.actamat.2017.04.044 Takeuchi, 2005, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46, 2817, 10.2320/matertrans.46.2817 Zhu, 2014, Zr-based bulk metallic glass composite with in situ precipitated nanocrystals, J. Alloys Compd., 586, 155, 10.1016/j.jallcom.2013.10.050 Hu, 2016, Evaluation of thermal stability and isochronal crystallization kinetics in the Ti40Zr25Ni8Cu9Be18 bulk metallic glass, J. Non-Cryst. Solids, 432, 254, 10.1016/j.jnoncrysol.2015.10.018 Kissinger, 1957, Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702, 10.1021/ac60131a045 Tang, 2016, Formation and dilatation of shear bands in a Cu-Zr metallic glass: a free volume perspective, J. Appl. Phys., 120, 10.1063/1.4972189 Singh, 2016, Crystallization behavior and mechanical properties of (Al90Fe5Ce5)100-xTix amorphous alloys, J. Alloys Compd., 687, 990, 10.1016/j.jallcom.2016.06.272 Singh, 2015, Effect of cooling rate on the crystallization and mechanical behaviour of Zr–Ga–Cu–Ni metallic glass composition, J. Alloys Compd., 648, 456, 10.1016/j.jallcom.2015.06.275 Singh, 2013, Hydrogenation of (Zr69.5Al7.5Cu12Ni11)100-xTix quasicrystalline alloys and its effect on their structural and microhardness behavior, J. Non-Cryst. Solids, 380, 11, 10.1016/j.jnoncrysol.2013.08.024 Singh, 2010, Indentation characteristics of metallic glass and nanoquasicrystal-glass composite in Zr–Al (Ga)–Cu–Ni alloys, Intermetallics, 18, 2445, 10.1016/j.intermet.2010.08.044 Singh, 2011, Nanoindentation characteristics of Zr69.5Al7.5-xGaxCu12Ni11 glasses and their nanocomposites, J. Alloys Compd., 509, 8657, 10.1016/j.jallcom.2011.06.076 Tang, 2004, Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques, Mater. Sci. Eng. A, 384, 215, 10.1016/j.msea.2004.06.013