Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction

Nature Materials - Tập 10 Số 10 - Trang 780-786 - 2011
Yongye Liang1, Yanguang Li1, Hailiang Wang1, Jigang Zhou2, Jian Wang2, Tom Regier2, Hongjie Dai1
1Department of Chemistry, Stanford University, Stanford, California 94305 USA
2Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. 103, 15729–15735 (2006).

Bard, A. J. & Fox, M. A. Artificial photosynthesis—solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 49, 3557–3566 (2010).

Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006).

Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

Bezerra, C. W. B. et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008).

Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

Liu, R., Wu, D., Feng, X. & Muellen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Edn. 49, 2565–2569 (2010).

Qu, L., Liu, Y., Baek, J-B. & Dai, L. Nitrogen-doped graphene as eficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

Trasatti, S. Electrodes of Conductive Metal Oxides (Elsevier, 1980).

Chen, G., Bare, S. R. & Mallouk, T. E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149, A1092–A1099 (2002).

Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010).

Wang, H., Robinson, J. T., Diankov, G. & Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 132, 3270–3271 (2010).

Wang, H. L., Casalongue, H. S., Liang, Y. Y. & Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010).

Liang, Y. Y., Wang, H. L., Casalongue, H. S., Chen, Z. & Dai, H. J. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701–705 (2010).

Li, Y. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

Wang, H. et al. Advanced asymmetrical supercapacitors based on graphene hybrid materials Nano Res.http://dx.doi.org/10.1007/s12274-011-0128-7 (2011).

Wang, H. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010).

Nethravathi, C. & Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46, 1994–1998 (2008).

Dong, Y., He, K., Yin, L. & Zhang, A. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 18, 435602 (2007).

Cotton, F. A., Wikinson, G. & Murillo, C. A. Advanced Inorganic Chemistry (Wiley, 1999).

Long, D. et al. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26, 16096–16102 (2010).

Mayrhofer, K. J. J. et al. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181–3188 (2008).

Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Aplications (Wiley, 2001).

Paulus, U. A., Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

Bidault, F., Brett, D. J. L., Middleton, P. H. & Brandon, N. P. Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 187, 39–48 (2009).

Mehta, V. & Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003).

Escribano, S., Blachot, J-F., Etheve, J., Morin, A. & Mosdale, R. Characterization of PEMFCs gas diffusion layers properties. J. Power Sources 156, 8–13 (2006).

Piana, M., Catanorchi, S. & Gasteiger, H. A. Kinetics of non-platinum group metal catalysts for the oxygen reduction reaction in alkaline medium. Electrochem. Soc. Trans. 16, 2045–2055 (2008).

Meng, H., Jaouen, F., Proietti, E., Lefevre, M. & Dodelet, J. P. pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem. Commun. 11, 1986–1989 (2009).

Jin, W., Du, H., Zheng, S. L., Xu, H. B. & Zhang, Y. Comparison of the oxygen reduction reaction between NaOH and KOH solutions on a Pt electrode: The electrolyte-dependent effect. J. Phys. Chem. B 114, 6542–6548 (2010).

Spendelow, J. S. & Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9, 2654–2675 (2007).

Zhang, L-S., Liang, X-Q., Song, W-G. & Wu, Z-Y. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys. Chem. Chem. Phys. 12, 12055–12059 (2010).

Zhou, J. G. et al. Immobilization of RuO2 on carbon nanotube: An x-ray absorption near-edge structure study. J. Phys. Chem. C 113, 10747–10750 (2009).

Rojas, T. C. et al. Preparation, characterization and thermal evolution of oxygen passivated nanocrystalline cobalt. J. Mater. Chem. 9, 1011–1017 (1999).

Zhou, J. G. et al. Electronic structure of TiO2 nanotube arrays from X-ray absorption near edge structure studies. J. Mater. Chem. 19, 6804–6809 (2009).

De Koninck, M. & Marsan, B. MnxCu1−xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim. Acta 53, 7012–7021 (2008).

Olson, T. S. et al. Anion-exchange membrane fuel cells: Dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J. Phys. Chem. C 114, 5049–5059 (2010).

Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. & Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009).