Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development

Oecologia - Tập 188 Số 1 - Trang 237-250 - 2018
Katalin Szlávecz1, Chih-Han Chang1, Michael J. Bernard1, S. Pitz1, Lijun Xia1, Yudao Ma2, Melissa McCormick3, Timothy R. Filley2, Stephanie A. Yarwood4, Ian D. Yesilonis5, Csaba Csuzdi6
1Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
2Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
3Smithsonian Environmental Research Center, Edgewater, MD, USA
4Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
5USDA Forest Service, Baltimore, MD, USA
6Department of Zoology, Eszterházy Károly University, Eger, Hungary

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson MJ (2001) A new method for non-parametric multicariate analysis of variance. Austral Ecol 26:32–46

Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x

Anderson MJ et al (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

Bayoumi BM (1978) Significance of the microhabitat on the distribution of oribatid mites in a hornbeam-oak mixed forest. Opuscula Zoologica (Budapest) 15:51–57

Bolker BM et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. https://doi.org/10.1016/j.tree.2008.10.008

Bozarth MA, Farrish KW, Damoff GA, VanKley J, Young JL (2016) Spatial distribution of earthworms in an east Texas forest ecosystem. Appl Soil Ecol 104:91–103. https://doi.org/10.1016/j.apsoil.2016.03.005

Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob Change Biol 23:4396–4419. https://doi.org/10.1111/gcb.13744

Brush GS, Lenk C, Smith J (1980) The natural forests of Maryland: an explanation of the vegetation map of Maryland. Ecol Monogr 50:77–92. https://doi.org/10.2307/2937247

Chang CH, Snyder BA, Szlavecz K (2016a) Asian pheretimoid earthworms in North America north of Mexico: an illustrated key to the genera Amynthas, Metaphire, Pithemera, and Polypheretima (Clitellata: Megascolecidae). Zootaxa 4179:495–529. https://doi.org/10.11646/zootaxa.4179.3.7

Chang CH, Szlavecz K, Buyer JS (2016b) Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biol Biochem 100:129–139. https://doi.org/10.1016/j.soilbio.2016.06.004

Chang CH, Szlavecz K, Filley T, Buyer JS, Bernard MJ, Pitz SL (2016c) Belowground competition among invading detritivores. Ecology 97:160–170. https://doi.org/10.1890/15-0551.1

Chang CH, Szlavecz K, Buyer JS (2017) Amynthas agrestis invasion increases microbial biomass in Mid-Atlantic deciduous forests. Soil Biol Biochem 114:189–199. https://doi.org/10.1016/j.soilbio.2017.07.018

Chang C-H, Johnston M, Görres J, Davalos A, McHugh D, Szlavecz K (2018) Co-invasion of three Asian earthworms, Metaphire hilgendorfi, Amynthas agrestis and Amynthas tokioensis in the USA. Biol Invasions. https://doi.org/10.1007/s10530-017-1607-x

Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B Biol Sci 366:2351–2363. https://doi.org/10.1098/rstb.2011.0063

Cleveland CC et al (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. https://doi.org/10.1007/s00442-013-2758-9

Cote B, Fyles JW (1994) Nutrient concentration and acid-base status of leaf litter of tree species characteristic of the hardwood forest of southern Quebec. Can J For Res Revue Canadienne De Recherche Forestiere 24:192–196. https://doi.org/10.1139/x94-027

Craven D et al (2017) The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob Change Biol 23:1065–1074. https://doi.org/10.1111/gcb.13446

Crow SE et al (2009) Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry 92:61–82. https://doi.org/10.1007/s10533-008-9260-1

Crumsey JM, Le Moine JM, Vogel CS, Nadelhoffer KJ (2014) Historical patterns of exotic earthworm distributions inform contemporary associations with soil physical and chemical factors across a northern temperate forest. Soil Biol Biochem 68:503–514. https://doi.org/10.1016/j.soilbio.2013.10.029

Csuzdi C, Zicsi A (2003) Earthworm of Hungary. Hungarian Natural History Museum, Budapest

Csuzdi C, Chang C-H, Pavlícek T, Szederjesi T, Esopi D, Szlávecz K (2017) Molecular phylogeny and systematics of native North American lumbricid earthworms (Clitellata: Megadrili). PLoS ONE 12(8):e0181504. https://doi.org/10.1371/journal.pone.0181504

de Schrijver A et al (2012) Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Change Biol 18:1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x

De Wandeler H et al (2016) Drivers of earthworm incidence and abundance across European forests. Soil Biol Biochem 99:167–178. https://doi.org/10.1016/j.soilbio.2016.05.003

Decaens T, Dutoit T, Alard D (1997) Earthworm community characteristics during afforestation of abandoned chalk grasslands (Upper Normandy, France). Eur J Soil Biol 33:1–11

Decaens T, Margerie P, Aubert M, Hedde M, Bureau F (2008) Assembly rules within earthworm communities in North-Western France—a regional analysis. Appl Soil Ecol 39:321–335. https://doi.org/10.1016/j.apsoil.2008.01.007

Dobson A, Blossey B (2015) Earthworm invasion, white-tailed deer and seedling establishment in deciduous forests of north-eastern North America. J Ecol 103:153–164. https://doi.org/10.1111/1365-2745.12350

Dózsa-Farkas K (1978) Ecological importance of microhabitats in the distribution of some enchytraeid species. Pedobiologia 18:366–372

Dunger W, Voigtlander K (2009) Soil fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as indicators of soil eco-subsystem development in post-mining sites of eastern Germany—a review. Soil Org 81:1–51

Eggleton P, Inward K, Smith J, Jones DT, Sherlock E (2009) A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol Biochem 41:1857–1865. https://doi.org/10.1016/j.soilbio.2009.06.007

Eijsackers H (2011) Earthworms as colonizers of natural and cultivated soil environments. Appl Soil Ecol 50:1–13. https://doi.org/10.1016/j.apsoil.2011.07.008

Eisenhauer N, Partsch S, Parkinson D, Scheu S (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39:1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019

Eisenhauer N et al (2009) Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol Biochem 41:2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001

Ernst G, Emmerling C (2009) Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur J Soil Biol 45:247–251. https://doi.org/10.1016/j.ejsobi.2009.02.002

Fanin N, Fromin N, Bertrand I (2016) Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology 97:1023–1037. https://doi.org/10.1890/15-1263.1

Ferlian O, Cesarz S, Marhan S, Scheu S (2014) Carbon food resources of earthworms of different ecological groups as indicated by 13C compound-specific stable isotope analysis. Soil Biol Biochem 77:22–30. https://doi.org/10.1016/j.soilbio.2014.06.002

Filley TR et al (2008) Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance. J Geophys Res Biogeosci. https://doi.org/10.1029/2007jg000542

Frouz J et al (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121. https://doi.org/10.1016/j.ejsobi.2007.09.002

Görres JH, Melnichuk RDS, Belliturk K (2014) Mortality pattern relative to size variation within Amynthas agrestis (Goto & Hatai 1899) (Oligochaeta: Megascolecidae) populations in the Champlain Valley of Vermont, USA. Megadrilogica 16:9–14

Greiner HG, Kashian DR, Tiegs SD (2012) Impacts of invasive Asian (Amynthas hilgendorfi) and European (Lumbricus rubellus) earthworms in a North American temperate deciduous forest. Biol Invasions 14:2017–2027. https://doi.org/10.1007/s10530-012-0208-y

Groffman PM et al (2015) Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol Biochem 87:51–58. https://doi.org/10.1016/j.soilbio.2015.03.025

Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecol Appl 15:848–860. https://doi.org/10.1890/03-5345

Hale CM, Frelich LE, Reich PB (2006) Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 87:1637–1649. https://doi.org/10.1890/0012-9658(2006)87[1637:cihfup]2.0.co;2

Higman D (1968) An ecologically annotated checklist of the vascular flora at the Chesapeake Bay Center for field biology, with keys. Smithsonian Institution, Washington, DC

Hobbie SE et al (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:tseoda]2.0.co;2

Holdsworth AR, Frelich LE, Reich PB (2012) Leaf litter disappearance in earthworm-invaded northern hardwood forests: role of tree species and the chemistry and diversity of litter. Ecosystems 15:913–926. https://doi.org/10.1007/s10021-012-9554-y

Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431. https://doi.org/10.1111/j.1461-0248.2008.01173.x

Laushman KM, Hotchkiss SC, Herrick BM (2018) Tracking an invasion: community changes in hardwood forests following the arrival of Amynthas agrestis and Amynthas tokioensis in Wisconsin. Biol Invasions. https://doi.org/10.1007/s10530-017-1653-4

Loss SR, Blair RB (2011) Reduced density and nest survival of ground-nesting songbirds relative to earthworm invasions in northern hardwood forests. Conserv Biol 25:983–992. https://doi.org/10.1111/j.1523-1739.2011.01719.x

Loss SR, Niemi GJ, Blair RB (2012) Invasions of non-native earthworms related to population declines of ground-nesting songbirds across a regional extent in northern hardwood forests of North America. Landsc Ecol 27:683–696. https://doi.org/10.1007/s10980-012-9717-4

Ma Y, Filley TR, Johnston CT, Crow SE, Szlavecz K, McCormick MK (2013) The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Org Geochem 58:56–68. https://doi.org/10.1016/j.orggeochem.2013.02.010

Ma Y, Filley TR, Szlavecz K, McCormick MK (2014) Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biol Biochem 69:212–222. https://doi.org/10.1016/j.soilbio.2013.10.043

Maerz JC, Nuzzo VA, Blossey B (2009) Declines in woodland salamander abundance associated with non-native earthworm and plant invasions. Conserv Biol 23:975–981. https://doi.org/10.1111/j.1523-1739.2009.01167.x

Mariotte P, Le Bayon RC, Eisenhauer N, Guenat C, Buttler A (2016) Subordinate plant species moderate drought effects on earthworm communities in grasslands. Soil Biol Biochem 96:119–127. https://doi.org/10.1016/j.soilbio.2016.01.020

McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107:3611–3615. https://doi.org/10.1073/pnas.0912376107

Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. https://doi.org/10.2307/1936780

Melody C, Schmidt O (2012) Northward range extension of an endemic soil decomposer with a distinct trophic position. Biol Lett 8:956–959. https://doi.org/10.1098/rsbl.2012.0537

Moorhead D, Lashermes G, Recous S, Bertrand I (2014) Interacting microbe and litter quality controls on litter decomposition: a modeling analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0108769

Moretti M et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567. https://doi.org/10.1111/1365-2435.12776

Muys B, Lust N, Cranval PH (1992) Effects of grassland afforestation with different tree species on earthworm communities, litter decomposition and nutrient status. Soil Biol Biochem 24:1459–1466

Neilson R, Boag B, Smith M (2000) Earthworm delta C-13 and delta N-15 analyses suggest that putative functional classifications of earthworms are site-specific and may also indicate habitat diversity. Soil Biol Biochem 32:1053–1061. https://doi.org/10.1016/s0038-0717(00)00013-4

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan

Pecl GT et al (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:1389. https://doi.org/10.1126/science.aai9214

Pizl V (1992) Succession of earthworm populations in abandoned fields. Soil Biol Biochem 24:1623–1628. https://doi.org/10.1016/0038-0717(92)90160-y

Pollierer MM et al (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. https://doi.org/10.1111/j.1461-0248.2007.01064.x

Ponge JF et al (1999) Interactions between earthworms, litter and trees in an old-growth beech forest. Biol Fertil Soils 29:360–370. https://doi.org/10.1007/s003740050566

Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149. https://doi.org/10.1007/s10533-010-9439-0

Qiu JX, Turner MG (2017) Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biol Invasions 19:73–88. https://doi.org/10.1007/s10530-016-1264-5

Ransom TS (2011) Earthworms, as ecosystem engineers, influence multiple aspects of a salamander’s ecology. Oecologia 165:745–754. https://doi.org/10.1007/s00442-010-1775-1

Raw F (1959) Estimating earthworm populations by using formalin. Nature 184:1661–1662

Reich PB et al (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x

Resner K et al (2015) Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest. Ecosystems 18:89–102. https://doi.org/10.1007/s10021-014-9814-0

R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

Schelfhout S et al (2017) Tree species identity shapes earthworm communities. Forests. https://doi.org/10.3390/f8030085

Scheu S (1992) Changes in the lumbricid coenosis during secondary succession from a wheat field to a beechwood on limestone. Soil Biol Biochem 24:1641–1646

Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–296

Schmidt O et al (2004) Duel stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia 48:171–180. https://doi.org/10.1016/j.pedobi.2003.12.003

Schwarz B et al (2015) Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur J Soil Biol 67:17–26. https://doi.org/10.1016/j.ejsobi.2015.01.001

Simmons W, Davalos A, Blossey B (2015) Forest successional history and earthworm legacy affect earthworm survival and performance. Pedobiologia 58:153–164. https://doi.org/10.1016/j.pedobi.2015.05.001

Skaug H, Fournier D, Bolker B, Magnusson A, Nielsen A (2016) Generalized linear mixed models using ‘AD Model Builder’. R package version 0.8.3.3

Snyder BA, Callaham MA Jr, Hendrix PF (2011) Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biol Invasions 13:349–358. https://doi.org/10.1007/s10530-010-9826-4

Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

Szlavecz K, Csuzdi C (2007) Land use change affects earthworm communities in Eastern Maryland, USA. Eur J Soil Biol 43:S79–S85. https://doi.org/10.1016/j.ejsobi.2007.08.008

Szlavecz K et al (2011) Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biol Invasions 13:1165–1182. https://doi.org/10.1007/s10530-011-9959-0

Trap J et al (2011) Does moder development along a pure beech (Fagus sylvatica L.) chronosequence result from changes in litter production or in decomposition rates? Soil Biol Biochem 43:1490–1497. https://doi.org/10.1016/j.soilbio.2011.03.025

Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

Vellend M (2016) The theory of ecological communities. Princeton University Press, Princeton

Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

White DL, Haines BL, Boring LR (1988) Litter decomposition in southern Appalachian black locust and pine hardwood stands—litter quality and nitrogen dynamics. Can J For Res 18:54–63. https://doi.org/10.1139/x88-009

Wilson-Kokes L, Skousen J (2014) Nutrient concentrations in tree leaves on brown and gray reclaimed mine soils in West Virginia. Sci Total Environ 481:418–424. https://doi.org/10.1016/j.scitotenv2014.02.015

Xia L, Szlavecz K, Swan CM, Burgess JL (2011) Inter- and intra-specific interactions of Lumbricus rubellus (Hoffmeister, 1843) and Octolasion lacteum (Orley, 1881) (Lumbricidae) and the implication for C cycling. Soil Biol Biochem 43:1584–1590. https://doi.org/10.1016/j.soilbio.2011.04.009

Yeates GW (1981) Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22:191–195

Yesilonis I, Szlavecz K, Pouyat R, Whigham D, Xia L (2016) Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. For Ecol Manag 370:83–92. https://doi.org/10.1016/j.foreco.2016.03.046

Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. https://doi.org/10.1093/jpe/rtn002

Zicsi A, Szlavecz K, Csuzdi C (2011) Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia 54:S145–S152. https://doi.org/10.1016/j.pedobi.2011.09.004