Photocatalytic degradation of flumequine with B/N codoped TiO2 catalyst: Kinetics, main active species, intermediates and pathways
Tài liệu tham khảo
Jaiswal, 2016, Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light, Appl. Catal. B: Environ., 183, 242, 10.1016/j.apcatb.2015.10.041
Fang, 2013, Advanced oxidation kinetics and mechanism of preservative propylparaben in aqueous suspension of TiO2 as well as risk assessment of its degradation intermediates, Environ. Sci. Technol., 47, 2704, 10.1021/es304898r
Cavalcante, 2016, Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: primary active species and intermediates, Appl. Catal. B: Environ., 194, 111, 10.1016/j.apcatb.2016.04.054
Cavalcante, 2015, Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol, Catal. Today, 252, 27, 10.1016/j.cattod.2014.09.030
Cavalcante, 2015, Photocatalytic treatment of metoprolol with B-doped TiO2: effect of water matrix, toxicological evaluation and identification of intermediates, Appl. Catal. B: Environ., 176–177, 173, 10.1016/j.apcatb.2015.04.007
Li, 2016, Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation-implications of persistent toxic intermediates, Appl. Catal. B: Environ., 180, 726, 10.1016/j.apcatb.2015.07.014
Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891, 10.1021/cr0500535
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Lei, 2015, Visible light-responded C, N and S co-doped anatase TiO2 for photocatalytic reduction of Cr(VI), J. Alloys Compd., 646, 541, 10.1016/j.jallcom.2015.04.233
Giannakas, 2013, Preparation, characterization of N-I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation, Appl. Catal. B: Environ., 140–141, 636, 10.1016/j.apcatb.2013.04.052
Giannakas, 2013, Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium (VI) in aqueous solution: an EPR study, Appl. Catal. B: Environ., 132–133, 460, 10.1016/j.apcatb.2012.12.017
Li, 2016, Construction and characterization of visible light active Pdnano-crystallite decorated and C-N-S-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid, Appl. Catal. B: Environ., 188, 259, 10.1016/j.apcatb.2016.02.019
Bakar, 2016, A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: a case study of possible sulfur doping through chemical protocol, J. Mol. Catal. A: Chem., 421, 1, 10.1016/j.molcata.2016.05.003
Birben, 2017, Application of Fe-doped TiO2, specimens for the solar photocatalytic degradation of humic acid, Catal. Today, 281, 78, 10.1016/j.cattod.2016.06.020
Pelaez, 2010, Synthesis structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR, Appl. Catal. B: Environ., 99, 378, 10.1016/j.apcatb.2010.06.017
Ju, 2013, Hydrothermal preparation and photocatalytic performance of N, S-doped nanometer TiO2 under sunshine irradiation, Powder Technol., 237, 616, 10.1016/j.powtec.2012.12.048
Zhou, 2013, The new understanding on photocatalytic mechanism of visible-light response N-S codoped anatase TiO2 by first-principles, Appl. Catal. B: Environ., 142–143, 45, 10.1016/j.apcatb.2013.04.063
Xiang, 2011, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed 001 facets: synthesis, characterization and visible-light photocatalytic activity, Phys. Chem. Chem. Phys., 13, 4853, 10.1039/C0CP01459A
Xu, 2010, Novel C-F-codoped TiO2 inverse opal with a hierarchical meso-/macroporous structure: synthesis, characterization, and photocatalysis, J. Phys. Chem. C, 114, 15251, 10.1021/jp101168y
Wu, 2010, Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light, Chem. Eng. J., 162, 710, 10.1016/j.cej.2010.06.030
Reyes-Garcia, 2007, Solid-state characterization of the nuclear and electronic environments in a boron-fluoride co-doped TiO2 visible-light photocatalyst, J. Phys. Chem. C, 111, 17146, 10.1021/jp070941z
Tamtam, 2008, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, Sci. Total Environ., 393, 84, 10.1016/j.scitotenv.2007.12.009
Ye, 2007, Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry, Anal. Chem., 79, 1135, 10.1021/ac060972a
Pozo, 2006, Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid hromatography/tandem mass spectrometry, J. Chromatogr. A, 1103, 83, 10.1016/j.chroma.2005.10.073
Tamtam, 2011, Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation, Sci. Total Environ., 409, 540, 10.1016/j.scitotenv.2010.10.033
Rodrigues-Silva, 2013, Degradation of flumequine by photocatalysis and evaluation of antimicrobial activity, Chem. Eng. J., 224, 46, 10.1016/j.cej.2012.11.002
Rodrigues-Silva, 2013, Degradation of flumequine by the Fenton and photo-Fenton processes: evaluation of residual antimicrobial activity, Sci. Total Environ., 445–446, 337, 10.1016/j.scitotenv.2012.12.079
Nieto, 2008, Photocatalyzed degradation of flumequine by doped TiO2 and simulated solar light, J. Hazard. Mater., 155, 45, 10.1016/j.jhazmat.2007.11.026
Sirtori, 2012, Photolysis of flumequine: identification of the major phototransformation products and toxicity measures, Chemosphere, 88, 627, 10.1016/j.chemosphere.2012.03.047
Feng, 2015, Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts, Water Res., 85, 1, 10.1016/j.watres.2015.08.011
Feng, 2016, Degradation of fluoroquinolone antibiotics by ferrate(VI): effects of water constituents and oxidized products, Water Res., 103, 48, 10.1016/j.watres.2016.07.014
Feng, 2016, Fast removal of the antibiotic flumequine from aqueous solution by ozonation: influencing factors, reaction pathways, and toxicity evaluation, Sci. Total Environ., 541, 167, 10.1016/j.scitotenv.2015.09.048
Paul, 2007, Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents, Environ. Sci. Technol., 41, 4720, 10.1021/es070097q
Zeng, 2016, Photodegradation of polyfluorinated dibenzo-p-dioxins (PFDDs) in organic solvents: experimental and theoretical studies, Environ. Sci. Technol., 50, 8128, 10.1021/acs.est.6b02682
Qi, 2016, Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury, Chem. Eng. J., 285, 11, 10.1016/j.cej.2015.09.055
Chen, 2015, A promising ozone-based advanced oxidation process for effective generation of hydroxyl radicals in acidic solution, Sep. Purif. Technol., 151, 269, 10.1016/j.seppur.2015.07.062
Yao, 2015, One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants, J. Hazard. Mater., 291, 28, 10.1016/j.jhazmat.2015.02.042
Zhao, 2015, The existing states of doped B3+ ions on the B doped TiO2, Appl. Surf. Sci., 345, 67, 10.1016/j.apsusc.2015.03.140
Tian, 2008, Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity, J. Phys. Chem. C, 112, 3083, 10.1021/jp710283p
Zhang, 2014, Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR, Appl. Catal. B: Environ., 144, 614, 10.1016/j.apcatb.2013.07.058
Balaji, 2006, Phonon confinement studies in nanocrystalline anatase-TiO2 thin films by micro Raman spectroscopy, J. Raman Spectrosc., 37, 1416, 10.1002/jrs.1566
Li Bassi, 2005, Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry, J. Appl. Phys., 98, 10.1063/1.2061894
Wang, 2014, Graphene wrapped TiO2 based catalysts with enhanced photocatalytic activity, Adv. Mater. Interfaces, 1, 1300150, 10.1002/admi.201300150
Rajender, 2018, Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis, Appl. Catal. B: Environ., 224, 960, 10.1016/j.apcatb.2017.11.042
Li, 2014, Ionic-liquid-assisted synthesis of high-visible-lght-activated N-B-F-tri-doped mesoporous TiO2 via a microwave route, Appl. Catal. B: Environ., 144, 442, 10.1016/j.apcatb.2013.07.050
Zhang, 2014, Preparation and photocatalytic activity of B-N co-doped mesoporous TiO2, Powder Technol., 253, 608, 10.1016/j.powtec.2013.12.024
In, 2007, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts, J. Am. Chem. Soc., 129, 13790, 10.1021/ja0749237
Xing, 2011, Formation of new structures and their synergistic effects in boron and nitrogen codoped TiO2 for enhancement of photocatalytic performance, J. Phys. Chem. C, 115, 7858, 10.1021/jp111103r
Gopal, 2008, Chemical state and environment of boron dopant in B, N-codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy, J. Am. Chem. Soc., 130, 2760, 10.1021/ja711424d
Zhou, 2011, Boron and nitrogen-codoped TiO2 nanorods: synthesis, characterization, and photoelectrochemical properties, J. Solid State Chem., 184, 3002, 10.1016/j.jssc.2011.09.017
Wang, 2011, Hydrogen-treated TiO2 nanowire arrays for photoelectro-chemical water splitting, Nano Lett., 11, 3026, 10.1021/nl201766h
Jia, 2011, Preparation of carbon coated TiO2 nanotubes film and its catalytic application for H2 generation, Catal. Commun., 12, 497, 10.1016/j.catcom.2010.11.015
Simsek, 2017, Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation, Appl. Catal. B: Environ., 200, 309, 10.1016/j.apcatb.2016.07.016
Wu, 2017, B and Y co-doped TiO2 photocatalyst with enhanced photodegradation efficiency, J. Alloys Compd., 695, 1462, 10.1016/j.jallcom.2016.10.284
Ling, 2008, Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen, Appl. Surf. Sci., 254, 3236, 10.1016/j.apsusc.2007.11.001
Wang, 2012, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity, Nanoscale, 4, 576, 10.1039/C1NR11353D
Palominos, 2008, Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine, J. Photochem. Photobiol. A: Chem., 193, 139, 10.1016/j.jphotochem.2007.06.017
Zhang, 2008, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed., 47, 1766, 10.1002/anie.200704788
Guo, 2019, Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma, Appl. Catal. B: Environ., 248, 552, 10.1016/j.apcatb.2019.01.052
Zhu, 2000, Photocatalytic degradation of Azo dyes by supported (TiO2 + UV) in aqueous solution, Chemosphere, 41, 303, 10.1016/S0045-6535(99)00487-7
Chen, 2012, Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis, J. Hazard. Mater., 219–220, 183, 10.1016/j.jhazmat.2012.03.074
Kaur, 2017, Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag2O/TiO2 quantum dots: a mechanistic study and degradation pathway, New J. Chem., 41, 12079, 10.1039/C7NJ02053H
Li, 2012, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2, J. Phys. Chem. C, 116, 3552, 10.1021/jp209661d
Li, 2013, Exploration of the active species in the photocatalytic degradation of methyl orange under UV light irradiation, J. Mol. Catal. A: Chem., 380, 10, 10.1016/j.molcata.2013.09.001
Palominos, 2009, Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions, Catal. Today, 144, 100, 10.1016/j.cattod.2008.12.031
Jing, 2012, Photocatalytic degradation of quinoline in aqueous TiO2 suspension, J. Hazard. Mater., 237–238, 247, 10.1016/j.jhazmat.2012.08.037
Regulska, 2016, Photocatalytic degradation of hazardous Food Yellow 13 in TiO2 and ZnO aqueous and river water suspensions, Catal. Today, 266, 72, 10.1016/j.cattod.2015.08.010
De la Cruz, 2013, o-Nitrobenzaldehyde actinometry in the presence of suspended TiO2 for photocatalytic reactors, Catal. Today, 209, 209, 10.1016/j.cattod.2012.08.035
Doudrick, 2013, Photocatalytic nitrate reduction in water: managing the hole scavenger and reaction by-product selectivity, Appl. Catal. B: Environ., 136–137, 40, 10.1016/j.apcatb.2013.01.042
Rengaraj, 2007, Enhanced photocatalytic reduction reaction over Bi3+-TiO2 nanoparticles in presence of formic acid as a hole scavenger, Chemosphere, 66, 930, 10.1016/j.chemosphere.2006.06.007
Lv, 2016, Photocatalytic selective oxidation of phenol to produce dihydroxybenzenes in a TiO2/UV system: hydroxyl radical versus hole, Appl. Catal. B: Environ., 199, 405, 10.1016/j.apcatb.2016.06.049